首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report, the modifications in the structural, optical, mechanical, electrical and nonlinear properties of 70 MeV Li3+ and 100 MeV Ag7+ ion irradiated M-Nitroaniline single crystals are studied. The irradiation induced defect structures at the crystal surface which becomes more prominent at higher irradiation fluences, leading to the enhancement in the optical absorption behaviour and the nonlinear property of the irradiated crystals. The mechanism leading to the enhanced nonlinearity and the blue shift of the irradiated M-NA crystals has been discussed.  相似文献   

2.
To study the effects of swift heavy ion irradiation on cerium dioxide (CeO2), CeO2 sintered pellets were irradiated with 200 MeV Xe ions at room temperature. For irradiated and unirradiated samples, the spectra of X-ray photoelectron spectroscopy (XPS) were measured. XPS spectra for the irradiated samples show that the valence state of Ce atoms partly changes from +4 to +3. The amount of Ce3+ state was quantitatively obtained as a function of ion-fluence. The relative amount of oxygen atom displacements, which are accompanied by the decrease in Ce valence state, is 3-5%. This value is too large to be explained in terms of elastic interactions between CeO2 and 200 MeV ions. The experimental result suggests the contribution of 200 MeV Xe induced electronic excitation to the displacements of oxygen atoms.  相似文献   

3.
In order to simulate the effects of burnable poison doping on the fission fragment damage of UO2 nuclear fuels, Er2O3-doped CeO2 pellets were irradiated with 200 MeV Xe14+ ions. The irradiation effect was measured by means of X-ray diffraction (XRD). The expansion of lattice and the disordering of atomic arrangement due to the irradiation become more remarkable with increasing the concentration of the Er2O3 dopant.  相似文献   

4.
We report here loss of H monitored by on-line elastic recoil detection analysis (ERDA) technique from passivated Hg1−xCdxTe (MCT) wafers due to irradiation by 80 MeV Ni9+, 120 MeV Au15+ and 200 MeV Ag10+. The loss of H is more in case of the wafer irradiated by Ag ions as compared to other two because of higher electronic energy loss (Se). For same Se value, H loss is more in case of the wafer having x = 0.29 as compared to the one having x = 0.204. This is due to higher band gap of the former as compared to the later, which is an important data for proper use of these materials as IR detector in intense radiation zone. These results are explained on the basis of thermal spike model of ion-solid interaction.  相似文献   

5.
We report the first investigation of the frequency dependent effect of 50 MeV Li3+ ion irradiation on the series resistance and interface state density determined from capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics in HfO2 based MOS capacitors prepared by rf-sputtering. The samples were irradiated by 50 MeV Li3+ ions at room temperature. The measured capacitance and conductance were corrected for series resistance. The series resistance was estimated at various frequencies from 1 KHz to 1 MHz before and after irradiation. It was observed that the series resistance decreases from 6344.5 to 322 Ω as a function of frequency before irradiation and 8954-134 Ω after irradiation. The interface state density Dit decreases from 1.12 × 1012 eV−1 cm−2 before irradiation to 3.67 × 1011 eV−1 cm−2 after ion irradiation and further decreases with increasing frequency.  相似文献   

6.
Luminescence studies of CaS:Bi nanocrystalline phosphors synthesized by wet chemical co-precipitation method and irradiated with swift heavy ions (i.e. O7+-ion with 100 MeV and Ag15+-ion with 200 MeV) have been carried out. The samples have been irradiated at different ion fluences in the range 1 × 1012-1 × 1013 ions/cm2. The average grain size of the samples before irradiation was estimated as 35 nm using line broadening of XRD (X-ray diffraction) peaks and TEM (transmission electron microscope) studies. Our results suggest a good structural stability of CaS:Bi against swift heavy ion irradiation. The blue emission band of CaS:Bi3+ nanophosphor at 401 nm is from the transition 3P→ 1S0 of the Bi3+. We have observed a decrease in lattice constant (a) and increase of optical energy band gap after ion irradiation. We presume this change due to grain fragmentation by dense electronic excitation induced by swift heavy ion. We have studied the optical and luminescent behavior of the samples by changing the ion energy and also by changing dopant concentration from 0.01 mol% to 0.10 mol%. It has been examined that ion irradiation enhanced the luminescence of the samples.  相似文献   

7.
We report on the secondary electron yields of Au and oxidized aluminum (Al2O3) by impact of heavy ions with energies ranging from 7.92 MeV/amu (12C6) to 2.54 MeV/amu (107Ag47). The obtained results, the first in this energy range using medium-heavy ions, extend the validity of proposed scaling laws obtained with lighter ions. Measurements have been performed using the SIRAD irradiation facility at the 15 MV Tandem of the INFN Laboratory of Legnaro (Italy), to evaluate the performance of ion electron emission microscopy at SIRAD.  相似文献   

8.
CeO2 films were irradiated with 200 MeV Au ions in order to investigate the damages created by electronic energy deposition. In the Raman spectra of the ion-irradiated films, a broad band appears at the higher frequency side of the F2g peak of CeO2. The band intensity increases as ion fluence increases. Furthermore, the F2g peak becomes asymmetric with a low-frequency tail. In order to understand the origin of these spectral changes, an unirradiated CeO2 film was annealed in vacuum at 1000 °C. By comparing the results for the irradiation and for the annealing, it is concluded that the broad band obtained for irradiated samples contains the peak observed for the annealed sample. The F2g peak becomes asymmetric with a low-frequency tail by the irradiation as well as the annealing. Therefore, the above-mentioned changes in the Raman spectra caused by 200 MeV Au irradiation is closely related to the creation of oxygen vacancies.  相似文献   

9.
Pure and Ytterbium (Yb) doped Calcium fluoride (CaF2) single crystals were irradiated with 100 MeV Ni7+ ions for fluences in the range 5 × 1011-2.5 × 1013 ions cm−2. The irradiated crystals were characterized by Optical absorption (OA) and Thermoluminescence (TL) techniques. The OA spectra of ion irradiated pure CaF2 crystals showed a broad absorption with peak at ∼556 nm and a weak one at ∼220 nm, whereas the Yb doped crystals showed two strong absorption bands at ∼300 and 550 nm. From the study of OA spectra, the defect centers responsible for the absorption were identified. TL measurements of Ni7+ ion irradiated pure CaF2 samples indicated a strong TL glow with peak at ∼510 K. However, the Yb doped crystals showed two TL glows at ∼406 and 496 K. The OA and TL intensity were found to increase with increase of ion fluence upto 1 × 1013 ions cm−2 and thereafter it decreased with further increase of fluence. The results obtained are discussed in detail.  相似文献   

10.
In order to understand the properties of ion tracks and the microstructural evolution under accumulation of ion tracks in UO2, 100 MeV Zr10+ and 210 MeV Xe14+ ions irradiation examinations have been done at a tandem accelerator facility of JAEA-Tokai, and it has been observed the microstructure by means of a transmission electron microscope (TEM) and a scanning electron microscope (SEM) in CRIEPI.Comparison of the diameter of ion tracks between UO2 and CeO2 under irradiation with 100 MeV Zr10+ and 210 MeV Xe14+ ions at room temperature clarify that the sensitivity on high density electronic excitation of UO2 is much less than that of CeO2. By the cross-sectional observation of UO2 under irradiation with 210 MeV Xe14+ ions at 300 °C, elliptical changes of fabricated pores that exist till ∼6 μm depth and the formation of dislocations have been observed in the ion fluence over 5 × 1014 ions/cm2. The drastic changes of surface morphology and inner structure in UO2 indicate that the overlapping of ion tracks will cause the point defects, enhance the diffusion of point defects and dislocations, and form the sub-grains at relatively low temperature.  相似文献   

11.
Magnesium stannate spinel (Mg2SnO4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg2SnO4 was achieved at an ion dose of 5 × 1019 Kr ions/m2 at 50 K and 1020 Kr ions/m2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr2+ ions in Mg2SnO4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg2SnO4 was finally compared with normal spinel MgAl2O4.  相似文献   

12.
The SHI irradiation induced effects on magnetic properties of MgB2 thin films are reported. The films having thickness 300-400 nm, prepared by hybrid physical chemical vapor deposition (HPCVD) were irradiated by 200 MeV Au ion beam (S∼ 23 keV/nm) at the fluence 1 × 1012 ion/cm2. Interestingly, increase in the transition temperature Tc from 35.1 K to 36 K resulted after irradiation. Substantial enhancement of critical current density after irradiation was also observed because of the pinning provided by the defects created due to irradiation. The change in surface morphology due to irradiation is also studied.  相似文献   

13.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

14.
Magnetic nanoparticles embedded in polymer matrices have excellent potential for electromagnetic device applications like electromagnetic interference suppression, etc. The NiO nanoparticles were synthesized by simple method. These nanoparticles were dispersed in PMMA matrix and films were prepared by casting method with varying concentrations of nickel oxide nanoparticles. These films were irradiated with 50 MeV Li+3 ions at a fluence of 5 × 1012 ions/cm2. AC electrical properties of pristine and irradiated samples were studied in wide frequency range. Dependence of dielectric properties on frequency, ion beam fluence and filler concentration was studied. The results reveal the enhancement in dielectric properties after doping nanoparticles and also upon irradiation, which is also corroborated with field-cooled-zero-field-cooled (FC-ZFC) susceptibility measurement in which magnetization is increased upon irradiation. The Fourier transform infrared (FTIR) spectroscopy analysis revealed the change in the intensity of functional groups after irradiation. Average surface roughness observed to change with filler concentration and also with the irradiation fluence as obtained from AFM analysis.  相似文献   

15.
Swift heavy ion irradiation has been successfully used to modify the structural, optical, and gas sensing properties of SnO2 thin films. The SnO2 thin films prepared by sol-gel process were irradiated with 75 MeV Ni+ beam at fluences ranging from 1 × 1011 ion/cm2 to 3 × 1013 ion/cm2. Structural characterization with glancing angle X-ray diffraction shows an enhancement of crystallinity and systematic change of stress in the SnO2 lattice up to a threshold value of 1 × 1013 ions/cm2, but decrease in crystallinity at highest fluence of 3 × 1013 ions/cm2. Microstructure investigation of the irradiated films by transmission electron microscopy supports the XRD observations. Optical properties studied by absorption and PL spectroscopies reveal a red shift of the band gap from 3.75 eV to 3.1 eV, and a broad yellow luminescence, respectively, with increase in ion fluence. Gas response of the irradiated SnO2 films shows increase of resistance on exposure to ammonia (NH3), indicating p-type conductivity resulting from ion irradiation.  相似文献   

16.
Effects of 150 MeV Ni11+ swift heavy ion (SHI) irradiation on copper ferrite nanoparticles have been studied at the fluences of 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 and 5 × 1014 ions/cm2. The XRD pattern shows the irradiation fluence dependant preferential orientation. Scanning electron microscope analysis displays fine blocks of material for pristine while partial agglomeration on irradiation. Notably, a large number of holes are present at the fluence of 5 × 1014 ions/cm2. The magnetization measurements performed in these samples exposes that the coercivity and remanence magnetization value increases due to the magnetocrystalline anisotropy up to the fluence of 1 × 1013 ions/cm2. At 1 × 1014 ions/cm2 fluence, the induced thermal energy overcomes the magnetocrystalline anisotropy constant and causes a decrease in coercivity and remanence values. The saturation magnetization decreases up to the fluence of 1 × 1013 ions/cm2 and then it increases for further irradiation. The change of crystalline orientation observed from XRD, the creation of holes from SEM and the change in magnetic properties are discussed on the basis of electro-phonon coupling and it invokes the thermal spike theory.  相似文献   

17.
ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beamline of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by transmission electron microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5 × 1012 cm−2 up to a total amorphisation between 1 × 1013 and 1 × 1014 cm−2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV nm−1.  相似文献   

18.
Modifications of the C70 molecule (fullerene) under swift heavy ion irradiation are investigated. C70 thin films were irradiated with 120 MeV Au ions at fluences from 1 × 1012 to 3 × 1013 ions/cm2. The energetic ion impacts lead to the destruction of the C70 molecule. To investigate the stability of C70 fullerene, the damage cross-section and radius of the damaged cylindrical zones are evaluated by fitting the evanescence of C70 vibration modes recorded by Raman spectroscopy. Conductivity measurements together with Raman and optical absorption studies revealed that an irradiation fluence of 3 × 1013 ions/cm2 results in complete amorphization of the carbon structure of the fullerene molecules.  相似文献   

19.
Thin films of nickel ferrite of thickness ∼100 and 150 nm were deposited by pulsed laser deposition. The films were irradiated with a 200 MeV Ag15+ beam of three fluences 1 × 1012, 2 × 1012 and 4 × 1012 ions/cm2. X-ray diffraction showed a decrease in the intensity of peaks indicating progressive amorphisation with increased irradiation fluence. Fourier transform infra-red and Raman spectra of pristine and irradiated films were also recorded which showed a degradation of the crystallinity of the samples after irradiation. The damage cross section of the infra-red bands was determined. It was found that the two bands at 557 and 614 cm−1 did not show similar behaviour with fluence.  相似文献   

20.
The corrosion assessment and surface layer properties after O5+ ion irradiation of commercially pure titanium (CP-Ti) has been studied in 11.5 N HNO3. CP-Ti specimen was irradiated at different fluences of 1 × 1013, 1 × 1014 and 1 × 1015 ions/cm2 below 313 K, using 116 MeV O5+ ions source. The corrosion resistance and surface layer were evaluated by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and glancing-angle X-ray diffraction (GXRD) methods. The potentiodynamic anodic polarization results of CP-Ti revealed that increased in ion fluence (1 × 1013-1 × 1015 ions/cm2) resulted in increased passive current density due to higher anodic dissolution. SEM micrographs and GXRD analysis corroborated these results showing irradiation damage after corrosion test and modified oxide layer by O5+ ion irradiation was observed. The EIS studies revealed that the stability and passive film resistance varied depending on the fluence of ion irradiation. The GXRD patterns of O5+ ion irradiated CP-Ti revealed the oxides formed are mostly TiO2, Ti2O3 and TiO. In this paper, the effects of O5+ ion irradiation on material integrity and corrosion behavior of CP-Ti in nitric acid are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号