首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Techniques for retrieving cloud optical properties, i.e., the optical depths and particle size distributions, using atmospheric "window" channels in the visible and near-infrared spectral regions are well established. For partially transparent thin cirrus clouds, these "window" channels receive solar radiances scattered by the surface and lower level water clouds. Accurate retrieval of optical properties of thin cirrus clouds requires proper modeling of the effects from the surface and the lower level water clouds. In this paper, we describe a new concept using two strong water vapor absorption channels near 1.38 and 1.88 /spl mu/m, together with one window channel, for remote sensing of cirrus optical properties. Both the 1.38- and 1.88-/spl mu/m channels are highly sensitive in detecting the upper level cirrus clouds. Both channels receive little scattered solar radiances from the surface and lower level water clouds because of the strong water vapor absorption below cirrus. The 1.88-/spl mu/m channel is quite sensitive to changes in ice particle size distributions, while the 1.38-/spl mu/m channel is less sensitive. These properties allow for simultaneous retrievals of optical depths and particle size distributions of cirrus clouds with minimal contaminations from the surface and lower level water clouds. Preliminary tests of this new concept are made using hyperspectral imaging data collected with the Airborne Visible Infrared Imaging Spectrometer. The addition of a channel near 1.88 /spl mu/m to future multichannel meteorological satellite sensors would improve our ability in global remote sensing of cirrus optical properties.  相似文献   

2.
The Moderate Resolution Imaging Spectro-Radiometer (MODIS) on the Terra spacecraft has a channel near 1.38 /spl mu/m for remote sensing of high clouds from space. The implementation of this channel on MODIS was primarily based on previous analysis of hyperspectral imaging data collected with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). We describe an algorithm to retrieve cirrus bidirectional reflectance using channels near 0.66 and 1.38 /spl mu/m. It is shown that the apparent reflectance of the 1.38-/spl mu/m channel is essentially the bidirectional reflectance of cirrus clouds attenuated by the absorption of water vapor above cirrus clouds. A practical algorithm based on the scatterplot of 1.38-/spl mu/m channel apparent reflectance versus 0.66-/spl mu/m channel apparent reflectance has been developed to scale the effect of water vapor absorption so that the true cirrus reflectance in the visible spectral region can be obtained. To illustrate the applicability of the present algorithm, results for cirrus reflectance retrievals from AVIRIS and MODIS data are shown. The derived cirrus reflectance in the spectral region of 0.4-1 /spl mu/m can be used to remove cirrus contamination in a satellite image obtained at a visible channel. An example of such an application is shown. The spatially averaged cirrus reflectances derived from MODIS data can be used to establish global cirrus climatology, as is demonstrated by a sample global cirrus reflectance image.  相似文献   

3.
With 2378 infrared spectral channels ranging in wavelength from 3.7-15.4 /spl mu/m, the Atmospheric Infrared Sounder (AIRS) represents a quantum leap in spaceborne sounding instruments. Each channel of the AIRS instrument has a well-defined spectral bandshape and must be radiometrically calibrated to standards developed by the National Institute of Standards and Technology. This paper defines the algorithms, methods, and test results of the prelaunch radiometric calibration of the AIRS infrared channels and the in-flight calibration approach. Derivation of the radiometric transfer equations is presented with prelaunch measurements of the radiometric accuracy achieved on measurements of independent datasets.  相似文献   

4.
The Moderate Resolution Imaging Spectroradiometer (MODIS) protoflight model onboard the National Aeronautics and Space Administration's Earth Observing System Terra spacecraft has been in operation for over five years since its launch in December 1999. It makes measurements using 36 spectral bands with wavelengths from 0.41 to 14.5 /spl mu/m. Bands 1-19 and 26 with wavelengths below 2.2 /spl mu/m, the reflective solar bands (RSBs), collect daytime reflected solar radiance at three nadir spatial resolutions: 0.25 km (bands 1-2), 0.5 km (bands 3-7), and 1 km (bands 8-19 and 26). Bands 20-25 and 27-36, the thermal emissive bands, collect both daytime and nighttime thermal emissions, at 1-km nadir spatial resolution. The MODIS spectral characterization was performed prelaunch at the system level. One of the MODIS onboard calibrators, the Spectroradiometric Calibration Assembly (SRCA), was designed to perform on-orbit spectral characterization of the MODIS RSB. This paper provides a brief overview of MODIS prelaunch spectral characterization, but focuses primarily on the algorithms and results of using the SRCA for on-orbit spectral characterization. Discussions are provided on the RSB center wavelength measurements and their relative spectral response retrievals, comparisons of on-orbit results with those from prelaunch measurements, and the dependence of center wavelength shifts on instrument temperature. For Terra MODIS, the center wavelength shifts over the past five years are less than 0.5 nm for most RSBs, indicating excellent stability of the instrument's spectral characteristics. Similar spectral performance has also been obtained from the Aqua MODIS (launched in May 2002) SRCA measurements.  相似文献   

5.
The Spinning Enhanced Visible and Infrared Imager (SEVIRI), the Meteosat Second Generation main radiometer, measures the reflected solar radiation within three spectral bands centered at 0.6, 0.8, and 1.6 /spl mu/m, and within a broadband. This broadband is similar to the solar channel of the radiometer onboard the first generation of METEOSAT satellites. The operational absolute calibration of these channels relies on modeled radiances over bright desert sites, as no in-flight calibration device is available. These simulated radiances represent, therefore, the "reference" against which SEVIRI is calibrated. The present study describes the radiative properties of these targets and evaluates the uncertainties associated with the characterization of this "reference", i.e. the modeled radiances. To this end, top-of-atmosphere simulated radiances are compared with several thousands of calibrated observations acquired by the European Remote Sensing 2/Along-Track Scanning Radiometer 2 (ERS2/ATSR-2), SeaStar/Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Syste/spl grave/me Pour l'Observation de la Terre 4 (SPOT-4/VEGETATION), and the Environmental Research Satellite/Medium Resolution Imaging Spectrometer (ENVISAT/MERIS) instruments over the SEVIRI desert calibration sites. Results show that the mean relative bias between observation and simulation does not exceed 3% in the red and near-infrared spectral bands with respect to the first two instruments.  相似文献   

6.
The longitude and latitude of the centroids of the Atmospheric Infrared Sounder (AIRS) infrared spectrometer footprints are calculated by the Level 1a calibration software based on transformations of scan angles, instrument alignment angles relative to the Earth Observing System Aqua spacecraft, and the spacecraft ephemeris. The detection of coastline crossings is used to determine the accuracy of these coordinates. Tests using simulated AIRS data derived from real Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite 10-/spl mu/m window data indicate that an accuracy of 1.7 km is easily achievable with modest amounts of data, such as should be available from AIRS by launch +90 days. This accuracy is a small fraction of the 13.5-km AIRS footprint and is consistent with the accuracy required by the Level 2 software. Preliminary results from actual AIRS data indicate that the algorithm works as predicted. For combined use of the AIRS 13.5-km footprints with MODIS 1-km footprints, accuracy of the order of 0.5 km is desirable. This accuracy may be achievable with several months of data, but depends on the accuracy of the reference map and whether a sufficient number of large clear homogeneous surface scenes can be found.  相似文献   

7.
Various instruments are used to create images of the earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high-resolution spectral measurements may be too costly to perform on a large sample, and therefore, lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. This work addresses this problem using virtual sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. The models we use Are multilayer perceptrons, support vector machines (SVMs) with radial basis function kernels, and SVMs with mixture density Mercer kernels. We demonstrate this method by using models trained on the high spectral resolution Terra Moderate Resolution Imaging Spectrometer (MODIS) instrument to estimate what the equivalent of the MODIS 1.6-/spl mu/m channel would be for the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (AVHRR/2) instrument. The scientific motivation for the simulation of the 1.6-/spl mu/m channel is to improve the ability of the AVHRR/2 sensor to detect clouds over snow and ice.  相似文献   

8.
Prelaunch spectral calibration of the atmospheric infrared sounder (AIRS)   总被引:1,自引:0,他引:1  
The Atmospheric Infrared Sounder (AIRS) is a high-resolution infrared sounder launched aboard the National Aeronautics and Space Administration's Aqua satellite on May 4, 2002. AIRS is a grating spectrometer with 2378 channels located between 15 and 3.8 /spl mu/m, with nominal resolving powers of /spl nu///spl Delta//spl nu/=1200. As the first of a new generation of upcoming infrared instruments with similar spectral coverage and resolution, there will be much interest in the performance of AIRS. The ability to retrieve good atmospheric profiles from AIRS observations will depend in part upon our knowledge of the spectral response of AIRS to the upwelling radiance. This paper discusses the spectral calibration of AIRS based upon an extensive set of laboratory test data generated by the instruments prime contractor, BAE. In particular, we describe the calibration of the AIRS spectral response functions, showing that our requirement for accuracies of "1% of a width" have been achieved.  相似文献   

9.
The Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB) instrument suite onboard Aqua observes infrared and microwave radiances twice daily over most of the planet. AIRS offers unprecedented radiometric accuracy and signal to noise throughout the thermal infrared. Observations from the combined suite of AIRS, AMSU, and HSB are processed into retrievals of atmospheric parameters such as temperature, water vapor, and trace gases under all but the cloudiest conditions. A more limited retrieval set based on the microwave radiances is obtained under heavy cloud cover. Before measurements and retrievals from AIRS/AMSU/HSB instruments can be fully utilized they must be compared with the best possible in situ and other ancillary "truth" observations. Validation is the process of estimating the measurement and retrieval uncertainties through comparison with a set of correlative data of known uncertainties. The ultimate goal of the validation effort is retrieved product uncertainties constrained to those of radiosondes: tropospheric rms uncertainties of 1.0 degC over a 1-km layer for temperature, and 10% over 2-km layers for water vapor. This paper describes the data sources and approaches to be used for validation of the AIRS/AMSU/HSB instrument suite, including validation of the forward models necessary for calculating observed radiances, validation of the observed radiances themselves, and validation of products retrieved from the observed radiances. Constraint of the AIRS product uncertainties to within the claimed specification of 1 K/1 km over well-instrumented regions is feasible within 12 months of launch, but global validation of all AIRS/AMSU/HSB products may require considerably more time due to the novelty and complexity of this dataset and the sparsity of some types of correlative observations.  相似文献   

10.
The assimilation of Atmospheric InfraRed Sounder, Advanced Microwave Sounding Unit-A, and Humidity Sounder for Brazil (AIRS/AMSU/HSB) data by Numerical Weather Prediction (NWP) centers is expected to result in improved forecasts. Specially tailored radiance and retrieval products derived from AIRS/AMSU/HSB data are being prepared for NWP centers. There are two types of products - thinned radiance data and full-resolution retrieval products of atmospheric and surface parameters. The radiances are thinned because of limitations in communication bandwidth and computational resources at NWP centers. There are two types of thinning: (1) spatial and spectral thinning and (2) data compression using principal component analysis (PCA). PCA is also used for quality control and for deriving the retrieval first guess used in the AIRS processing software. Results show that PCA is effective in estimating and filtering instrument noise. The PCA regression retrievals show layer mean temperature (1 km in troposphere, 3 km in stratosphere) accuracies of better than 1 K in most atmospheric regions from simulated AIRS data. Moisture errors are generally less than 15% in 2-km layers, and ozone errors are near 10% over approximately 5-km layers from simulation. The PCA and regression methodologies are described. The radiance products also include clear field-of-view (FOV) indicators. The residual cloud amount, based on simulated data, for FOVs estimated to be clear (free of clouds) is about 0.5% over ocean and 2.5% over land.  相似文献   

11.
通过等效通道选择原理分析,认为通过构建等效通道,可使其权重函数峰值高度高于目前美国DOAA气象卫星HIRS/2第一通道的峰值高度,通过大量的模拟计算试验,证实了这一原理实现的可能性,进一步利用15μmCO2吸收带的7个温度探测通道的所选择的等效通道一起反2大气温度垂直分布,结果表明增加一个等效通道对温度廓线反演有一定改善,特别是对平流层(50-2hPa)温度反演,平均每层精度提高的0.27K。  相似文献   

12.
Polar sea ice plays a critical role in regulating the global climate. Seasonal variation in sea ice extent, however, coupled with the difficulties associated with in situ observations of polar sea ice, makes remote sensing the only practical way to estimate this important climatic variable on the space and time scales required. Unfortunately, accurate retrieval of sea ice extent from satellite data is a difficult task. Sea ice and high cold clouds have similar visible reflectance, but some other types of clouds can appear darker than sea ice. Moreover, strong atmospheric inversions and isothermal structures, both common in winter at some polar locations, further complicate the classification. This paper uses a combination of feed-forward neural networks and 1.6-/spl mu/m data from the new Chinese Fengyun-1C satellite to mitigate these difficulties. The 1.6-/spl mu/m data are especially useful for detecting illuminated water clouds in polar regions because 1) at 1.6 /spl mu/m, the reflectance of water droplets is significantly higher than that of snow or ice and 2) 1.6-/spl mu/m data are unaffected by atmospheric inversions. Validation data confirm the accuracy of the new classification technique. Application to other sensors with 1.6-/spl mu/m capabilities also is discussed.  相似文献   

13.
The process and device performance of 1 /spl mu/m-channel n-well CMOS have been characterized in terms of substrate resistivities of 40 and 10 /spl Omega/-cm, substrate materials with and without an epitaxial layer, n-well surface concentrations ranging from 5/spl times/10/SUP 15/ to 4/spl times/10/SUP 16/ cm/SUP -3/, n-well depths of 3, 4, and 5 /spl mu/m, channel boron implantation doses from 2/spl times/10/SUP 11/ to 1.3/spl times/10/SUP 12/ cm/SUP -2/, and effective channel lengths down to 0.6 /spl mu/m. Based on the experimental results obtained from /spl mu/m-channel n-well CMOS devices, the scaling effects on device and circuit performance of 0.5 /spl mu/m-channel n-well CMOS are discussed and the deep-trench-isolated CMOS structure is demonstrated.  相似文献   

14.
A 640 /spl times/ 512 pixel, long-wavelength cutoff, narrowband (/spl Delta//spl lambda///spl lambda//spl sim/10%) quantum-well infrared photodetector (QWIP) focal plane array (FPA), a four-band QWIP FPA in the 4-15 /spl mu/m spectral region, and a broadband (/spl Delta//spl lambda///spl lambda/ /spl sim/ 42%) QWIP FPA having a 15.4 /spl mu/m cutoff have been demonstrated. In this paper, we discuss the electrical and optical characterization of these FPAs, and their performance. In addition, we discuss the development of a very sensitive (NEDT /spl sim/ 10.6 mK) 640 /spl times/ 512 pixel thermal imaging camera having a 9 /spl mu/m cutoff.  相似文献   

15.
A new electrostatic discharge (ESD) implantation method is proposed to significantly improve ESD robustness of CMOS integrated circuits in subquarter-micron CMOS processes, especially the machine-model (MM) ESD robustness. By using this method, the ESD current is discharged far away from the surface channel of nMOS, therefore the nMOS (both single nMOS and stacked nMOS) can sustain a much higher ESD level. The MM ESD robustness of the gate-grounded nMOS with a device dimension width/length (W/L) of 300 /spl mu/m/0.5 /spl mu/m has been successfully improved from the original 450 V to become 675 V in a 0.25-/spl mu/m CMOS process. The MM ESD robustness of the stacked nMOS in the mixed-voltage I/O circuits with a device dimension W/L of 300 /spl mu/m/0.5 /spl mu/m for each nMOS has been successfully improved from the original 350 V to become 500 V in the same CMOS process. Moreover, this new ESD implantation method with the n-type impurity can be fully merged into the general subquarter-micron CMOS processes.  相似文献   

16.
The authors have investigated the reliability performance of G-band (183 GHz) monolithic microwave integrated circuit (MMIC) amplifiers fabricated using 0.07-/spl mu/m T-gate InGaAs-InAlAs-InP HEMTs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel on 3-in wafers. Life test was performed at two temperatures (T/sub 1/ = 200 /spl deg/C and T/sub 2/ = 215 /spl deg/C), and the amplifiers were stressed at V/sub ds/ of 1 V and I/sub ds/ of 250 mA/mm in a N/sub 2/ ambient. The activation energy is as high as 1.7 eV, achieving a projected median-time-to-failure (MTTF) /spl ap/ 2 /spl times/ 10/sup 6/ h at a junction temperature of 125 /spl deg/C. MTTF was determined by 2-temperature constant current stress using /spl Delta/G/sub mp/ = -20% as the failure criteria. The difference of reliability performance between 0.07-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel and 0.1-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with In/sub 0.6/Ga/sub 0.4/As channel is also discussed. The achieved high-reliability result demonstrates a robust 0.07-/spl mu/m pseudomorphic InGaAs-InAlAs-InP HEMT MMICs production technology for G-band applications.  相似文献   

17.
In this paper, novel channel and source/drain profile engineering schemes are proposed for sub-50-nm bulk CMOS applications. This device, referred to as the silicon-on-depletion layer FET (SODEL FET), has the depletion layer beneath the channel region, which works as an insulator like a buried oxide in a silicon-on-insulator MOSFET. Thanks to this channel structure, junction capacitance (C/sub j/) has been reduced in SODEL FET, i.e., C/sub j/ (area) was /spl sim/0.73 fF//spl mu/m/sup 2/ both in SODEL nFET and pFET at Vbias =0.0 V. The body effect coefficient /spl gamma/ is also reduced to less than 0.02 V/sup 1/2/. Nevertheless, current drives of 886 /spl mu/A//spl mu/m (I/sub off/=15 nA//spl mu/m) in nFET and -320 /spl mu/A//spl mu/m (I/sub off/=10 nA//spl mu/m) in pFET have been achieved in 70-nm gate length SODEL CMOS with |V/sub dd/|=1.2 V. New circuit design schemes are also proposed for high-performance and low-power CMOS applications using the combination of SODEL FETs and bulk FETs on the same chip for 90-nm-node generation and beyond.  相似文献   

18.
An ultrathin vertical channel (UTVC) MOSFET with an asymmetric gate-overlapped low-doped drain (LDD) is experimentally demonstrated. In the structure, the UTVC (15 nm) was obtained using the cost-effective solid phase epitaxy, and the boron-doped poly-Si/sub 0.5/Ge/sub 0.5/ gate was adopted to adjust the threshold voltage. The fabricated NMOSFET offers high-current drive due to the lightly doped (<1/spl times/10/sup 15/ cm/sup -3/) channel, which suppresses the electron mobility degradation. Moreover, an asymmetric gate-overlapped LDD was used to suppress the offstate leakage current and reduce the source/drain series resistance significantly as compared to the conventional symmetrical LDD. The on-current drive, offstate leakage current, subthreshold slope, and DIBL for the fabricated 50-nm devices are 325 /spl mu/A//spl mu/m, 8/spl times/10/sup -9/ /spl mu/A//spl mu/m, 87 mV/V, and 95 mV/dec, respectively.  相似文献   

19.
In this paper, a silicon-on-insulator (SOI) radio-frequency (RF) microelectromechanical systems (MEMS) technology compatible with CMOS and high-voltage devices for system-on-a-chip applications is experimentally demonstrated for the first time. This technology allows the integration of RF MEMS switches with driver and processing circuits for single-chip communication applications. The SOI high-voltage device (0.7-/spl mu/m channel length, 2-/spl mu/m drift length, and over 35-V breakdown voltage), CMOS devices (0.7-/spl mu/m channel length and 1.3/-1.2 V threshold voltage), and RF MEMS capacitive switch (insertion loss 0.14 dB at 5 GHz and isolation 9.5 dB at 5 GHz) are designed and fabricated to show the feasibility of building fully integrated RF systems. The performance of the fabricated RF MEMS capacitive switches on low-resistivity and high-resistivity SOI substrates will also be compared.  相似文献   

20.
A wireless interface by inductive coupling achieves aggregated data rate of 195 Gb/s with power dissipation of 1.2W among 4-stacked chips in a package where 195 transceivers with the data rate of 1 Gb/s/channel are arranged in 50-/spl mu/m pitch in 0.25-/spl mu/m CMOS technology. By thinning chip thickness to 10/spl mu/m, the interface communicates at distance of 15 /spl mu/m at minimum and 43 /spl mu/m at maximum. A low-power single-end transmitter achieves 55% power reduction for multiple connections. The transmit power is dynamically controlled in accordance with communication distance to reduce not only power dissipation but also crosstalk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号