首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
机床高速电主轴原理与应用   总被引:5,自引:0,他引:5  
杨军  郭力  卿红 《机床与液压》2001,(4):43-44,42
本文介绍了高速电主轴的工作原理和基本结构,同时着重介绍了高速电主轴的轴承,最后分析了高速电主轴的驱动和冷却润滑方式,综述其应用及发展前景。  相似文献   

2.
应用有限元方法对高速电主轴的优化设计   总被引:4,自引:1,他引:4  
介绍了高速电主轴的结构特点,应用有限元分析软件ANSYS以刚度为目标对高速电主轴进行了优化设计,并对优化后的结构进行了热态校核。  相似文献   

3.
随着加工中心机床向着高速化发展,油气润滑已成为高速加工中心电主轴最理想的润滑方式.文章介绍了一种应用于高速加工中心电主轴的油气润滑方法,有效的解决了高速加工中心机床电主轴的轴承润滑及冷却问题,对其他机床的电主轴设计具有一定的借鉴及指导作用.  相似文献   

4.
阐述了高速电主轴的发展历程、高速电主轴的结构组成以及高速电主轴的主要特点。介绍了采用数控机床高速加工技术,可以解决机械产品制造中零件的质量问题的特点。分析了高精度、高转速电主轴对数控机床性能的影响。实践证明,采用高速加工技术可以解决机械产品制造中的诸多难题,能够获得特殊的加工精度和表面质量。高精度高转速电主轴功能部件,对提高数控机床的性能具有极大的影响。  相似文献   

5.
数控高速电主轴技术及其发展趋势   总被引:4,自引:1,他引:3  
储开宇 《机床与液压》2006,(10):228-230
高速加工是近年来发展起来的先进制造技术,电主轴是实现机床高速化的核心部件。本文详细阐述了高速主轴的技术难点、存在问题、发展现状,并提出了我国电主轴技术发展方向。  相似文献   

6.
高速磨削电主轴的温升对电主轴的加工精度和使用寿命有着重要的影响。以SPM170高速磨削电主轴为研究对象,采用理论分析和试验验证的方法对高速磨削电主轴的冷却系统进行了研究。通过分析可知电主轴电机部分的产热主要是由铁芯损耗产生的,水冷系统可以有效地带走电机部分的热量,使电主轴的温升降低。对SPM170高速磨削电主轴的冷却系统进行了改进,设计了一种新型螺旋水道,在电主轴最高工作转速时,分别测量电主轴前轴承壳体温度,并对比其温升。结果表明:采用改进之后的螺旋水冷装置电主轴的温升比改进前温升降低了10℃左右,温升得到了有效的控制。  相似文献   

7.
胡秋  何东林 《机床与液压》2006,(12):205-206
主轴单元的热变形是高速加工中影响精度的主要因素。本文利用大型有限元分析软件ANSYS对高速电主轴进行了热-结构耦合分析。计算结果显示,设计的高速电主轴单元主轴轴承、主轴前端温升理想,工作端轴向热位移很小。这表明设计的电主轴具有良好的热-结构性能,可以满足加工精度要求。  相似文献   

8.
FEA方法在电主轴阶梯过盈联结校核中的应用   总被引:2,自引:0,他引:2  
介绍了高速数控机床电主轴扭矩传递联接——阶梯过盈配合的结构特点,和应用有限元方法对该过盈配合联接进行了应力应变分析的详细过程,通过结果分析,验证了该结构设计的合理性和联接的可靠性。  相似文献   

9.
为了分析高速电主轴的动态和热态特性,设计了一套基于Lab VIEW的高速电主轴振动和温度数据采集系统。该系统主要由压电式加速度传感器、一体化温度传感器、数据采集卡、变频器和计算机组成,使用Lab VIEW2009虚拟仪器开发平台,实现了高速电主轴运行中振动和温度信号的实时采集处理、波形显示以及信号存储。  相似文献   

10.
高速电主轴关键技术的研究   总被引:14,自引:1,他引:13  
高速加工技术能极大地提高生产率和降低生产成线,是21世纪最有发展前任的先进制造技术之一。电主轴是实现机床高速化的核心部件,本文结合高速铣削用大功率电主轴开发课详细分析了高速主轴技术的现状,存在问题及解决方法。  相似文献   

11.
黄孟丽  张长 《机床与液压》2018,46(8):106-109
为研究高速电主轴静刚度的特性,利用DH3818静态应变测试仪,以高速电主轴为本体,研究高速电主轴静刚度与作用在电主轴上的力之间的关系。使用静态应变测试仪和力传感器在电主轴处于稳定状态时对1.5×10~4r/min电主轴和6×10~4r/min电主轴的径向刚度和轴向刚度进行测试,通过测试得知:高速电主轴静刚度大小与端部变形量成反比。对比分析1.5×10~4r/min电主轴轴向刚度与径向刚度,可知电主轴径向刚度远远大于轴向刚度;对比分析1.5×10~4r/min与6×10~4r/min电主轴径向刚度,可知最高转速低的电主轴比最高转速高的电主轴刚度大。又因为过低的静刚度会对数控机床的性能造成影响,所以提高电主轴静刚度也可使机床的性能得到提高。  相似文献   

12.
高速机床电主轴过盈配合量的计算   总被引:13,自引:1,他引:13  
电主轴是高速机床的核心部件,电机转子与机床主轴间过盈配合量的大小是影响主轴性能的重要因素。本文根据材料力学和弹性力学理论,对电主轴的配合特性进行了分析,分别推导出电主轴在静态和高速运转条件下,主轴过盈量和应力分布的理论公式。最后,根据理论公式计算出GD-Ⅱ型电主轴的过盈配合量,研究结果表明,采用理论公式设计的过盈配合能较好地满足高速电主轴的需要。  相似文献   

13.
高速电主轴热变形问题一直是影响加工精度的重要因素。为降低电主轴的温升和轴向热伸长量,对某电主轴的热源及热边界条件进行分析,利用ANSYS Workbench软件进行热-结构耦合仿真,得到电主轴温度场和热结构耦合场;搭建实验台测试电主轴系统的温度场和轴向热伸长,验证有限元模型建立的正确性。最后选用38CrMoAl、ZrO2、Si3N4、玻璃陶瓷作为主轴材料进行热-结构耦合对比分析。结果表明:陶瓷材料在热态性能方面优于钢材,玻璃陶瓷材料热态性能最好。  相似文献   

14.
高速超高速磨削工艺及其实现技术   总被引:12,自引:1,他引:12  
高速超高速磨削加工是先进制造方法的重要组成部分,集粗精加工与一身,达到可与车、铣和刨削等切削加工方法相媲美的金属磨除率,而且能实现对难磨材料的高性能加工。本文主要论述了高速超高速磨削工艺技术的特点;分析了电主轴是高速超高速磨削主轴系统的理想结构,介绍了陶瓷滚动轴承、磁浮轴承、空气静压轴承和液体动静压轴承在主轴单元中的应用;超高速砂轮主要用电镀或涂层超硬磨料(CBN、金刚石)制成,介绍了超硬磨粒的特点和砂轮的修整,分析了在高速及超高速磨床上得到广泛应用的德国Hofinann公司生产的砂轮液体式自动平衡装置;介绍了高压喷射法,空气挡板辅助截断气流法,气体内冷却法,径向射流冲击强化换热法磨削液供给系统的特点;最后介绍了直线电机进给系统和声发射智能监测系统等实现高速超高速磨削的关键技术。  相似文献   

15.
为研究油气润滑参数对高速电主轴热特性的影响,在考虑气流压力和供油量2个因素下对高速电主轴进行热特性正交试验。结果表明:供油量对温升指标的影响最大,气流压力影响次之,二者的交互因素对温升指标的影响比较小。获得了最佳水平组合,得到了不同水平组合下电主轴各方向的热变形;分析电主轴各方向热变形不同的原因,得到在实际加工中应该重点控制主轴Z方向热变形量的结论。  相似文献   

16.
数控机床高速电主轴的研究进展   总被引:6,自引:1,他引:5  
姚华 《机床与液压》2004,120(2):5-6,66
本文从高速电主轴的动力学特性、轴承与润滑、热特性、制造装配技术、电机与测控等几方面。系统地阐述了数控机床高速电主轴的国内外发展现状。  相似文献   

17.
<正>江苏星晨高速电机有限公司是集科研、开发、生产于一体的高科技公司,具有近20年生产高速电主轴经验。目前生产的GDS、SDK、SDS等三大系列高速电主轴(其中雕铣机用恒功率电主轴、加工中心并联机床用松拉刀电主轴分别申请了国家专利,专利申请号为:200520076779·1、200620068643-0),由于采用了机电一体化新技术、新材料、新工艺,电机低速力矩大、噪音低、转速平稳、频率高、无极调速、使用方便。近年来我公司又研制了恒功率、自动换刀、车床、加工中心、  相似文献   

18.
高速电主轴过盈联结装置的设计   总被引:5,自引:1,他引:4  
介绍了一种适用于高速高精度数控机床电主轴部件的轴向定位与扭矩传递装置———阶梯过盈套,它是一种可拆式过盈联结装置。文中阐述了该装置的结构特点和设计计算方法,分析了各因素对其承载能力的影响。通过设计实例,验证其设计计算的合理性  相似文献   

19.
选取电主轴温升为研究对象,分别验证油气润滑系统与冷却系统的工作参数对高速电主轴工作性能的影响。采用单一因素实验法,通过电主轴实验平台对不同工况下电主轴后端轴承温升进行实验分析。结果表明:在冷却水流量为034 L/min、润滑压力为040 MPa、供油间隔为120 s时电主轴温升较小。  相似文献   

20.
针对高速电主轴实际运行中主轴内部发热量大、温度升高等导致主轴热变形而影响电主轴加工精度问题,以某型电主轴为研究对象,通过仿真与试验结合的方法探究冷却系统冷却能力。阐述电主轴热态特性;分析螺旋和循环冷却系统的有限元仿真结果;进行冷却系统对比试验,验证仿真结果。结果表明:螺旋冷却系统稳态下整体冷却效果和冷却速率都优于循环冷却系统。研究结果为电主轴设计、优化与开发提供了一定的技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号