首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Air delivery is typically the greatest parasitic power loss in polymer electrolyte membrane fuel cell (PEMFC) systems. We here present a detailed study of an active water management system for PEMFCs, which uses a hydrophilic, porous cathode flow field, and an electroosmotic (EO) pump for water removal. This active pumping of liquid water allows for stable operation with relatively low air flow rates and low air pressure and parallel cathode channel architectures. We characterize in-plane transport issues and power distributions using a three by three segmented PEMFC design. Our transient and steady state data provide insight into the dynamics and spatial distribution of flooding and flood-recovery processes. Segment-specific polarization curves reveal that the combination of a wick and an EO pump can effect a steady state, uniform current distribution for a parallel channel cathode flow field, even at low air stoichiometries (αair = 1.5). The segmented cell measurements also reveal the mechanisms and dynamics associated with EO pump based recovery from catastrophic flooding. For most operating regimes, the EO pump requires less than 1% of the fuel cell power to recover from near-catastrophic flooding, prevent flooding, and extend the current density operation range.  相似文献   

2.
The transient response of proton-exchange membrane fuel cells (PEMFCs) is an important criterion in their application to automotive systems. Nevertheless, few papers have attempted to study experimentally this dynamic behaviour and its causes. Using a large-effective-area (330 cm2) unit PEMFC and a transparent unit PEMFC (25 cm2), systematic transient response and cathode flooding during load changes are investigated. The cell voltage is acquired according to the current density change under a variety of stoichiometry, temperature and humidity conditions, as well as different flooding intensities. In the case of the transparent fuel cell, the cathode gas channel images are obtained simultaneously with a CCD imaging system. The different levels of undershoot occur at the moment of load change under different cathode stoichiometry, both cathode and anode side humidity and flooding intensity conditions. It is shown that undershoot behaviour consists of two stages with different time delays: one is of the order of 1 s and the other is of the order of 10 s. It takes about 1 s for the product water to come up on to the flow channel surface so that oxygen supply is temporarily blocked, which causes voltage loss in that “undershoot”. The correlation of dynamic behaviour with stoichiometry and cathode flooding is analyzed from the results of these experiments.  相似文献   

3.
An optical sensor was developed with the capability of detecting liquid water in the flow channels of a proton exchange membrane fuel cell (PEMFC) as well as simultaneously measuring temperature. This work is an extension of previous research in which an optical temperature sensor was developed for measuring the in situ temperature of PEM fuel cells based on the principles of phosphor thermometry. The optical sensor was installed in the cathode flow channel of a 5 cm2 proton exchange membrane fuel cell. The fuel cell was tested under both dry and humid conditions. Liquid water formation in the flow channels was quantitatively measured from the experimental data. An observed time fraction value was estimated for characterizing flow channel flooding. The observed time fraction of liquid water in the flow channel was found to be closely related to the relative humidity of reactants and the operating current of the fuel cell.  相似文献   

4.
《Journal of power sources》2006,156(2):267-280
The water flooding and two-phase flow of reactants and products in cathode flow channels (0.8 mm in width, 1.0 mm in depth) were studied by means of transparent proton exchange membrane fuel cells. Three transparent proton exchange membrane fuel cells with different flow fields including parallel flow field, interdigitated flow field and cascade flow field were used. The effects of flow field, cell temperature, cathode gas flow rate and operation time on water build-up and cell performance were studied, respectively. Experimental results indicate that the liquid water columns accumulating in the cathode flow channels can reduce the effective electrochemical reaction area; it makes mass transfer limitation resulting in the cell performance loss. The water in flow channels at high temperature is much less than that at low temperature. When the water flooding appears, increasing cathode flow rate can remove excess water and lead to good cell performance. The water and gas transfer can be enhanced and the water removal is easier in the interdigitated channels and cascade channels than in the parallel channels. The cell performances of the fuel cells that installed interdigitated flow field or cascade flow field are better than that installed with parallel flow field. The images of liquid water in the cathode channels at different operating time were recorded. The evolution of liquid water removing out of channels was also recorded by high-speed video.  相似文献   

5.
In order to investigate the effect of microstructure of PEMFC porous layers on the liquid water transport, liquid water accumulation and discharge behavior in the operating PEMFC was visualized by laboratory-based soft X-ray radiography. The utilization of low energy X-ray made it possible to visualize the liquid water behavior in the PEMFC with the spatial resolution of 0.8 μm and the temporal resolution of 2.0 s frame−1, and the cross-sectional imaging can resolve the each components of the PEMFC. The visualization results showed that adding the MPL prevents the accumulation of liquid water in the substrate layer from contacting and forming the liquid water film on the catalyst layer. Furthermore, it was found that the liquid water distribution in the carbon paper and the carbon cloth GDL was completely different. The liquid water in the carbon cloth GDL concentrates at the weaves of fiber bundle and was effectively discharged to the channel. These visualization results suggested that the microstructure of the PEMFC porous layers strongly affect the liquid water behavior in the PEMFC, and the detailed understanding of the pore structures and the network of liquid water is essential for keeping the oxygen transport path to the catalyst site.  相似文献   

6.
Flow field structure can largely determine the output performance of Polymer electrolyte membrane fuel cell. Excellent channel configuration accelerates electrochemical reactions in the catalytic layer, effectively avoiding flooding on the cathode side. In present study, a three-dimensional, multi-phase model of PEMFC with a 3D wave flow channel is established. CFD method is applied to optimize the geometry constructions of three-dimensional wave flow channels. The results reveal that 3D wave flow channel is overall better than straight channel in promoting reactant gases transport, removing liquid water accumulated in microporous layer and avoiding thermal stress concentration in the membrane. Moreover, results show the optimal flow channel minimum depth and wave length of the 3D wave flow channel are 0.45 mm and 2 mm, respectively. Due to the periodic geometric characteristics of the wave channel, the convective mass transfer is introduced, improving gas flow rate in through-plane direction. Furthermore, when the cell output voltage is 0.4 V, the current density in the novel channel is 23.8% higher than that of conventional channel.  相似文献   

7.
A three-dimensional “full-cell” computational fluid dynamics (CFD) model is proposed in this paper to investigate the effects of different flow channel designs on the performance of proton exchange membrane fuel cells (PEMFC). The flow channel designs selected in this work include the parallel and serpentine flow channels, single-path and multi-path flow channels, and uniform depth and step-wise depth flow channels. This model is validated by the experiments conducted in the fuel cell center of Yuan Ze University, showing that the present model can investigate the characteristics of flow channel for the PEMFC and assist in the optima designs of flow channels. The effects of different flow channel designs on the PEMFC performance obtained by the model predictions agree well with those obtained by experiments. Based on the simulation results, which are also confirmed by the experimental data, the parallel flow channel with the step-wise depth design significantly promotes the PEMFC performance. However, the performance of PEMFC with the serpentine flow channel is insensitive to these different depth designs. In addition, the distribution characteristics of fuel gases and current density for the PEMFC with different flow channels can be also reasonably captured by the present model.  相似文献   

8.
The cathode flow-field design of a proton exchange membrane fuel cell (PEMFC) determines its reactant transport rates to the catalyst layer and removal rates of liquid water from the cell. This study optimizes the cathode flow field for a single serpentine PEM fuel cell with 5 channels using the heights of channels 2–5 as search parameters. This work describes an optimization approach that integrates the simplified conjugated-gradient scheme and a three-dimensional, two-phase, non-isothermal fuel cell model. The proposed optimal serpentine design, which is composed of three tapered channels (channels 2–4) and a final diverging channel (channel 5), increases cell output power by 11.9% over that of a cell with straight channels. These tapered channels enhance main channel flow and sub-rib convection, both increasing the local oxygen transport rate and, hence, local electrical current density. A diverging, final channel is preferred, conversely, to minimize reactant leakage to the outlet. The proposed combined approach is effective in optimizing the cathode flow-field design for a single serpentine PEMFC. The role of sub-rib convection on cell performance is demonstrated.  相似文献   

9.
This work experimentally investigates the thermal performance of a pyrolytic graphite sheet (PGS) in a single proton exchange membrane fuel cell (PEMFC). This PGS with high thermal conductivity serves as a heat spreader, reduces the volume and weight of cooling systems, and reduces and homogenizes the temperature in the reaction area of the fuel cells. A transparent PEMFC is constructed with PGS of thickness 0.1 mm cut into the shape of a flow channel and bound with the cathode gas channel plate. Eleven thermocouples are embedded at different positions on the cathode gas channel plate to measure the temperature distribution. The water and water flooding inside the cathode gas channels, with and without PGS, were successfully visualized. The locations of liquid water are correlated with the temperature measurement. PGS reduces the maximum cell temperature and improves cell performance at high cathode flow rates. The temperature distribution is also more uniform in the cell with PGS than in the one without PGS. Results of this study demonstrate the promising application of PGS to the thermal management of a fuel cell system.  相似文献   

10.
In proton exchange membrane fuel cells (PEMFC), the design of the cathode flow field is very important, because an excellent flow channel design can not only accelerate the transmission rate of liquid water, but also affect the distribution of electrode reactants and electrode products which influence the electrochemical performance of the fuel cell. This study presents three new channels (models 1,2 and 3), which were created using two unilateral slopes and a bilateral slope structure with tapered tube lengths of 0.4, 1.2 and 0.8 mm, respectively. The dynamic behavior of liquid water under the three design schemes is numerically studied based on the volume of fluid method. And the influence on the performance of fuel cell was analyzed synthetically. The results indicate that the introduction of a tapered and sloping structure can improve the transmission efficiency of the droplets in the flow channel, and the maximum droplet removal time of the new channel can be reduced by 24.4%compare with standard conventional flow channel. The slope structure guides the flow path of water droplet and reduces the occurrence of droplet spatter. Influenced by the slope and tapered structures, the turbulence of airflow near the bottom surface (gas diffusion layer)of the flow channel is enhanced and Oxygen concentration in the cathode is raised, which improves the mass transfer capacity and average current density of reactive surface. In conclusion, the new type of channel with a tapered and sloping structure has a potential to improve the performance of water management in the cathode channel of PEMFC.  相似文献   

11.
It is known that the static contact angle reflecting the “contact area” between liquid and solid is insufficient to represent the dynamic wettability of a solid surface, and another parameter called the sliding angle is needed to describe the relative easiness of liquid moving on a solid surface. However, sliding angle has been largely neglected in the previous studies for proton exchange membrane fuel cell (PEMFC). In this study, three-dimensional multiphase simulations are carried out for a PEMFC with single straight flow channels considering both the static contact angles and sliding angles of gas diffusion layer (GDL) and catalyst layer (CL). The results show that the liquid water volume fraction in cathode CL (CCL) and GDL (CGDL) can be increased by several times when the sliding angle is increased while the static contact angle is kept constant. This could have significant implication on the water management strategy due to the considerable changes in the water transport and removal processes. Since GDL is much thicker than CL, changing the surface dynamic wettability of GDL has more significant effect on liquid water transport than changing the surface dynamic wettability of CL.  相似文献   

12.
This work presents an experimental investigation on the preferential accumulation of liquid water in the channels of a multiple serpentine PEMFC with 50 cm2 active area. Neutron imaging was used for visualizing the liquid water distribution during the cell operation for a wide range of operating conditions. Liquid water accumulation in the cathode channels was observed for most of the operating conditions, with a preferential accumulation in certain channels of the flow field. A statistical analysis was performed in order to determine the main characteristics of this accumulation (i.e. channel number and degree of accumulation). As cathode channels were positioned in vertical direction, it was found that gravity effects had an important influence in the accumulation, as well as the relative position of the channel with respect to the inlet and outlet locations. The gas flow direction had also a major impact on the water accumulation within the channels, with significantly more water accumulated in channels with upwards gas flow.  相似文献   

13.
The dynamic behavior of a five cells proton exchange membrane fuel cell (PEMFC) stack operating in dead-end mode has been studied at room temperature, both experimentally and by simulation. Its performances in “fresh” and “aged” state have been compared. The cells exhibited two different response times: the first one at about 40 ms, corresponding to the time needed to charge the double-layer capacitance, and the second one at about 15–20 s. The first time response was not affected by the ageing process, despite the decrease of the performances, while the second one was. Our simulations indicated that a high amount of liquid water was present in the stack, even in “fresh” state. This liquid water is at the origin of the performances decrease with ageing, due to its effect on decreasing the actual GDL porosity that in turn cause the starving of the active layer with oxygen. As a consequence, it appears that water management issue in a fuel cell operating in dead-end mode at room temperature mainly consists in avoiding pore flooding instead of providing enough water to maintain membrane conductivity.  相似文献   

14.
Utilization of 3D nanostructured Pt cathodes could obviously improve performances of proton exchange membrane fuel cells (PEMFCs) owing to the reduced tortuosity and the bi-continuous nanoporous structure. However, these cathodes usually suffer from the flooding problem ascribed to the ionomer-free and nanoscale pores which are more susceptible to water condensation. In this paper, ultra-thin nanoporous metal films (100 nm) were utilized to construct PEMFC cathodes and independent transport channels were designed separately for water and gas aiming at the flooding problem. Nanoporous gold (NPG) film was used as the model support for loading Pt nanoparticles owing to its controllable and stable structure. After optimizing the polytetrafluoroethylene (PTFE) content and carbon loading in the gas diffusion layer (GDL), plasma treatment under O2 atmosphere was used to pattern the GDL with independent water transport channels. The obtained liquid permeation coefficients and oxygen gains demonstrated the obviously improved water and O2 transport. By using a home-made optimized GDL and a nanoporous film cathode with pore size ~60 nm, the flooding problem could be facilely solved. With a Pt loading of ~16 μg cm?2, this 3D nanostructured cathode exhibits a PEMFC performance of ~957 mW cm?2 at 80 °C. The Pt power efficiency is about 4 times higher than that of the commercial Pt/C cathode (50 μg cm?2, 756 mW cm?2). Obviously, this study provides a simple but effective methodology to solve the water flooding problem in the ultra-thin nanoporous film cathodes which is applicable for other types of 3D nanostructured PEMFC cathodes.  相似文献   

15.
A proton exchange membrane fuel cell (PEMFC) must maintain a balance between the hydration level required for efficient proton transfer and excess liquid water that can impede the flow of gases to the electrodes where the reactions take place. Therefore, it is critically important to understand the two-phase flow of liquid water combined with either the hydrogen (anode) or air (cathode) streams. In this paper, we describe the design of an in situ test apparatus that enables investigation of two-phase channel flow within PEMFCs, including the flow of water from the porous gas diffusion layer (GDL) into the channel gas flows; the flow of water within the bipolar plate channels themselves; and the dynamics of flow through multiple channels connected to common manifolds which maintain a uniform pressure differential across all possible flow paths. These two-phase flow effects have been studied at relatively low operating temperatures under steady-state conditions and during transient air purging sequences.  相似文献   

16.
Microstructures of various sizes and shapes are fabricated on the surface of the catalyst layer (CL) of the cathode of a PEMFC, adjacent to the micro porous layer (MPL). Three major experimental results are: (1) performance is improved by up to 60% and the percentage of the increase is the same as that of the increase in interface area of CL and MPL; (2) the cell suffers no significant performance loss when Pt loading of the cathode is reduced from 1 to 0.25 mg cm−2 and; (3) transient responses in periodical linear sweep tests show an obvious performance “jump” for all the cathodes with microstructures when approaching steady state, but none for others. Based on observations, a proposal related to the development of water and, consequently, the major reaction sites in the CL is made: there is a general water “surface” inside the CL. Major electrochemical reactions occur above (on the MPL side) of this surface and within a limited height. The surface will “move” from the membrane toward the MPL as more water is produced. The vapor generation rate (current load) relative to the removal rate of the rest of the cell components will determine the steady state position of this water surface.  相似文献   

17.
A new approach to numerical simulation of liquid water distribution in channels and porous media including gas diffusion layers (GDLs), catalyst layers, and the membrane of a proton exchange membrane fuel cell (PEMFC) was introduced in this study. The three-dimensional, PEMFC model with detailed thermo-electrochemistry, multi-species, and two-phase interactions. Explicit gas-liquid interface tracking was performed by using Computational Fluid Dynamics (CFD) software package FLUENT® v6.2, with its User-Defined Functions (UDF) combined with volume-of-fluid (VOF) algorithm. The liquid water transport on a PEMFC with interdigitated design was investigated. The behavior of liquid water was understood by presenting the motion of liquid water droplet in the channels and the porous media at different time instants. The numerical results show that removal of liquid water strongly depends on the magnitude of the flow field. Due to the blockage of liquid water, the gas flow is unevenly distributed, the high pressure regions takes place at the locations where water liquid appears. In addition, mass transport of the species and the current density distribution is significantly degraded by the presence of liquid water.  相似文献   

18.
Water flooding in the cathode channel of the proton exchange membrane fuel cell (PEMFC), which reduce the current density output and affect fuel cell lifetime. Hence, to suppress water flooding, a novel channel is proposed in this study, that is to perforate hole between the cooling channel and cathode channel. A 3D numerical model is used to investigate the influence of the parameters including the hole's dimension, position, numbers, the operation conditions of the PEMFC and the slope angle (θ) of the incline cooling channel. The numerical results indicate that the optimal single hole parameters are 0.4 mm long, 0.5 mm wide and 20 mm position, which can maximum the current density output of the PEMFC. Increasing the hole numbers for novel channels can improve water removal. In addition, in comparison with the conventional channel with θ = 0.20° at 1.8 cathode stoichiometry, the H5 (novel channel with five holes) with θ = 0.20° decreases by 43.10% in the maximum water saturation of cathode channel, while increases by 12.54% in current density output. What's more, all the novel channel structure research hardly raises the pressure drop of channels.  相似文献   

19.
In this work, assembly pressure and flow channel size on proton exchange membrane fuel cell performance are optimized by means of a multi-model. Based on stress-strain data of the SGL-22BB GDL obtained from its initial compression experiments, Young's modulus with different ranges of assembly pressure fits well through modeling. A mechanical model is established to analyze influences of assembly pressure on various gas diffusion layer parameters. Moreover, a CFD calculation model with different assembly pressures, channel width, and channel depth are established to calculate PEMFC performances. Furthermore, a BP neural network model is utilized to explore optimal combination of assembly pressure, channel width and channel depth. Finally, the CFD model is used to validate effect of size optimization on PEMFC performance. Results indicate that gap change of GDL below bipolar ribs is more remarkable than that below channels under action of the assembly pressure, making liquid water easily transported under high porosity, which is conducive to liquid water to the channels, reduces the accumulation of liquid water under the ribs, and enhances water removal in the PEMFC. Affected by the assembly force, change of GDL porosity affects its diffusion rate, permeability and other parameters, which is not conducive to mass transfer in GDL. Optimizing the depth and different dimensions through width of the flow field can effectively compensate for this effect. Therefore, the PEMFC performance can be enhanced through the comprehensive optimization of the assembly force, flow channel width and flow channel depth. The optimal parameter is obtained when assembly pressure, channel width and channel depth are set as 0.6 MPa, 0.8 mm, and 0.8 mm, respectively. The parameter optimization enhances the mass transfer, impedance, and electrochemical characteristics of PEMFC. Besides, it effectively enhances the quality transfer efficiency inside GDL, prevents flooding, and reduces concentration loss and ohmic loss.  相似文献   

20.
This work designed and tested innovative flow channels in order to improve water management in a polymer electrolyte membrane fuel cell (PEMFC). The design employed slanted channels with an angle of 20° in a flow plate to collect the liquid water that permeated from the gas diffusion layers. The effects of orientations of the slanted channels in up-slanted and down-slanted directions and relative humidity levels on the cell performance were investigated. The experimental results showed that modifying the anode flow field using down-slanted channels provided higher cell performance. Water concentration at the gas diffusion layer is reduced resulting in more back diffusion of water from the cathode to anode, thus inducing membrane hydration and improving the conductivity. Promotion of water removal by applying down-slanted channels in the cathode side did not improve the performance. This work has demonstrated that channel cross-section design alone could improve the PEM fuel cell performance. The anode down-slanted cell indeed improved the performances at extremely wet condition and the power was equally good as that without modified flow channel at less wet condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号