首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Novel tastes are more effective than familiar tastes as conditioned stimuli (CSs) in taste aversion learning. Parallel to this, a novel CS-unconditioned stimulus (US) pairing induced stronger Fos-like immunoreactivity (FLI) in insular cortex (IC), amygdala, and brainstem than familiar CS-US pairing, suggesting a large circuit is recruited for acquisition. To better define the role of IC, the authors combined immunostaining with lesion or reversible inactivation of IC. Lesions abolished FLI increases to novel taste pairing in amygdala, suggesting a role in novelty detection. Reversible inactivation during taste preexposure increased FLI to familiar taste pairing in amygdala and brainstem. The difference between temporary inactivation, which blocked establishment of "safe" taste memory, and lesions points to a dual role for IC in taste learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
The cholinergic system is important for learning, memory, and responses to novel stimuli. Exposure to novel, but not familiar, tastes increases extracellular acetylcholine (ACh) levels in insular cortex (IC). To further examine whether cholinergic activation is a critical signal of taste novelty, in these studies carbachol, a direct cholinergic agonist, was infused into IC before conditioned taste aversion (CTA) training with a familiar taste. By mimicking the cholinergic activation generated by novel taste exposure, it was hypothesized that a familiar taste would be treated as novel and therefore a salient target for aversion learning. As predicted, rats infused with the agonist were able to acquire CTAs to familiar saccharin. Effects of carbachol infusion on patterns of neuronal activation during conditioned stimulus–unconditioned stimulus pairing were assessed using Fos-like immunoreactivity (FLI). Familiar taste–illness pairing following carbachol, but not vehicle, induced significant elevations of FLI in amygdala, a region with reciprocal connections to IC that is also important for CTA learning. These results support the view that IC ACh activity provides a critical signal of taste novelty that facilitates CTA acquisition. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
The results in this article show that although electrolytic amygdala lesions disrupt learning of a conditioned taste aversion (CTA), ibotenic acid-induced, axon-sparing lesions of the amygdala do not. However, ibotenic acid lesions of the insular cortex do disrupt learning of a CTA. Electrolytic, but not ibotenic acid lesions of the amygdala, interrupt axons running between the insular (gustatory) cortex and the brainstem/hypothalamus. It is the destruction of these projections which appears to underlie CTA deficits after amygdala lesions. Other results revealed that ibotenic acid lesions of the insular cortex attenuated the reaction to the novel taste of saccharin in a familiar environment but failed to affect the ingestion of a novel food in a novel environment or passive avoidance learning. Conversely, ibotenic acid lesions of the amygdala did not affect the reaction to novel saccharin in a familiar environment but did impair both the reaction to novel food in a novel environment and passive avoidance learning. We conclude that the insular cortex is involved in reactions to the novelty and associative salience exclusively of taste stimuli, whereas the amygdala is probably more concerned with the reaction to more general aspects of novelty in the environment and in fear-motivated behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
24 Long-Evans hooded rats lacking gustatory neocortex and 24 normal rats were familiarized to either hydrochloric acid or quinine hydrochloride solutions during free-drinking trials. Ss were subsequently trained to avoid either the familiar or the novel taste stimulus, using a balanced design, by pairing the to-be-associated taste with ip injections of apomorphine hydrochloride. Balanced, nonpaired presentations of the other taste solution and water were also presented. Normal Ss learned to avoid the novel taste more efficiently than the familiar taste. Ss with gustatory neocortex lesions did not differentiate novel from familiar tastes. They learned aversions to both in a manner highly similar to the aversion learning of familiar tastes by the normal group. Therefore, results demonstrate that Ss lacking gustatory neocortex displayed an associative deficiency only when they were trained on novel stimuli. This suggests that gustatory neocortex lesions disrupt the conditionability of taste stimuli by reducing or eliminating responses to taste novelty. This interpretation is supported by the absence of a "neophobic" response in the lesioned rats to the first presentation of a taste stimulus. (26 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
This study investigates which forebrain structures show Fos protein expression during conditioned taste aversion (CTA) acquisition and whether Fos expression depends on the aversion strength. A novel taste paired with an intraperitoneal injection of a low dose of the malaise-inducing agent lithium chloride (LiCl) induced a weak CTA, whereas associating this novel taste with a high dose of LiCl induced a strong CTA. Increasing the strength of the gastric malaise alone enhanced Fos expression in central, basal, and lateral amygdala nuclei and decreased Fos expression in the nucleus accumbens core. Taste-malaise association induced specific Fos activation in the insular cortex (with both the low and the high doses of LiCl) and the nucleus accumbens shell (with the high LiCl dose only). No significant variation of Fos expression was measured in the perirhinal cortex. Several forebrain areas may be sites of taste-malaise convergence during CTA acquisition depending on the strength of the aversion. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Rats were given to drink an unfamiliar taste solution under conditions that result in long-term memory of that taste. The insular cortex, which contains the taste cortex, was then removed and assayed for activation of mitogen-activated protein kinase (MAPK) cascades by using antibodies to the activated forms of various MAPKs. Extracellular responsive kinase 1-2 (ERK1-2) in the cortical homogenate was significantly activated within <30 min of drinking the taste solution, without alteration in the total level of the ERK1-2 proteins. The activity subsided to basal levels within <60 min. In contrast, ERK1-2 was not activated when the taste was made familiar. The effect of the unfamiliar taste was specific to the insular cortex. Jun N-terminal kinase 1-2 (JNK1-2) was activated by drinking the taste but with a delayed time course, whereas the activity of Akt kinase and p38MAPK remained unchanged. Elk-1, a member of the ternary complex factor and an ERK/JNK downstream substrate, was activated with a time course similar to that of ERK1-2. Microinjection of a reversible inhibitor of MAPK/ERK kinase into the insular cortex shortly before exposure to the novel taste in a conditioned taste aversion training paradigm attenuated long-term taste aversion memory without significantly affecting short-term memory or the sensory, motor, and motivational faculties required to express long-term taste aversion memory. It was concluded that ERK and JNK are specifically and differentially activated in the insular cortex after exposure to a novel taste, and that this activation is required for consolidation of long-term taste memory.  相似文献   

8.
Reports results of 8 experiments with a total of 327 male Sprague-Dawley rats. Lesions to the basolateral amygdala produced permanent impairment in Ss' ability to learn a taste aversion. When lesions were administered after Ss had already learned an aversion, there was complete loss of the aversion. Ss with amygdala lesions also had a diminished neophobic response when presented with a novel solution and showed a more generalized aversion to water after a sucrose-sickness trial. Whether a solution was novel or familiar affected the learning of an aversion for controls more than it did for Ss with amygdala lesions. Ss with amygdala damage also showed less sodium appetite than normals in response to desoxycorticosterone acetate injections. These results indicate that rats with amygdala lesions have deficits in recognizing the significance of stimuli. (49 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
[Correction Notice: An erratum for this article was reported in Vol 121(6) of Behavioral Neuroscience (see record 2007-18058-034). Figure 4 on p. 96 (Results and Discussion, Experiment 2: Behavioral section) was incorrect. The correct figure is provided in the erratum.] The present study examined the effects of neurotoxic lesions of the central nucleus (CNA) and basolateral complex (BLA) of the amygdala on conditioned taste aversion (CTA) in a latent inhibition design. In Experiment 1, lesions of the CNA were found to have no affect on CTA acquisition regardless of whether the taste conditioned stimulus (CS) was novel or familiar. Lesions of the BLA, although having no influence on performance when the CS was familiar, retarded CTA acquisition when the CS was novel in Experiment 2. The pattern of results suggests that the CTA deficit in rats with BLA lesions may be a secondary consequence of a disruption of perceived stimulus novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
It has been proposed that long-term potentiation (LTP) a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC) a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl-d-aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonist CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid) disrupts the acquisition of conditioned taste aversion, as well as, the IC-LTP induction in vivo. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA dependent neocortical LTP, constitute a possible mechanism for the learning related functions performed by the IC.  相似文献   

11.
Rats failed to acquire aversions to odor stimulus, which was followed 30 min later by an unconditioned stimulus (US). However, when the odor stimulus was accompanied by a taste stimulus, they acquired odor aversions as well as taste aversions. In this phenomenon, referred to as a taste-potentiated odor aversion, lesions of the amygdala disrupted both taste and odor aversions, whereas lesions of the parvicellular part of ventroposteromedial thalamic nucleus (VPMpc) or insular cortex (IC) disrupted taste aversion but attenuated only odor aversion. These results suggest that both taste and odor stimuli are associated with US in the amygdala and that taste inputs delivered to the amygdala through the IC and/or VPMpc play an important role in potentiation of odor aversion. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Recent advances in neural mechanisms of taste are reviewed with special reference to neuroactive substances. In the first section, taste transduction mechanisms of basic tastes are explained in two groups, whether taste stimuli directly activate ion channels in the taste cell membrane or they bind to cell surface receptors coupled to intracellular signaling pathways. In the second section, putative transmitters and modulators from taste cells to afferent nerves are summarized. The candidates include acetylcholine, catecholamines, serotonin, amino acids and peptides. Studies favor serotonin as a possible neuromodulator in the taste bud. In the third section, the role of neuroactive substances in the central gustatory pathways is introduced. Excitatory and inhibitory amino acids (e.g., glutamate and GABA) and peptides (substance P and calcitonin gene-related peptide) are proved to play roles in transmission of taste information in both the brainstem relay and cortical gustatory area. In the fourth section, conditioned taste aversion is introduced as a model to study gustatory learning and memory. Pharmacobehavioral studies to examine the effects of glutamate receptor antagonists and protein kinase C inhibitors on the formation of conditioned taste aversion show that both glutamate and protein kinase C in the amygdala and cortical gustatory area play essential roles in taste aversion learning. Recent molecular and genetic approaches to disclose biological mechanisms of gustatory learning are also introduced. In the last section, behavioral and pharmacological approaches to elucidate palatability, taste pleasure, are described. Dopamine, benzodiazepine derivatives and opioid substances may play some roles in evaluation of palatability and motivation to ingest palatable edibles.  相似文献   

13.
Rats (Rattus norvegicus) with almost complete ibotenic acid lesions (at least 90%) of the basolateral amygdaloid complex (BLA) failed to learn a conditioned taste aversion (CTA; Experiment 1A). In these same BLA rats, the bidirectional parabrachial–insular pathway that courses through the central nucleus of the amygdala (Ce) was shown to be spared (Experiment 1B), indicating that the BLA per se is critical for CTA learning. In contrast to the deleterious effect of BLA lesions on CTA, ibotenic acid lesions of the Ce did not block CTA learning (Experiment 2). Nonreinforced preexposure to the gustatory stimulus attenuated CTA acquisition in normal rats, and, under these conditions, rats with BLA lesions were no longer impaired (Experiment 3). Thus, ibotenic acid lesions centered over the Ce, sparing a considerable extent of the BLA, together with the testing procedure used in previous experiments (e.g., L. T. Dunn & B. J. Everitt, 1988), led to the belief that the CTA deficits reported after electrolytic lesions of the amygdala were the result of incidental damage to fibers of passage. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
The present experiment examined the influence of insular cortex (IC) lesions on the intake of a taste stimulus in a consummatory procedure that used morphine as the unconditioned stimulus. In normal rats, morphine caused a rapid reduction in saccharin intake when the taste was novel but not when it was familiar. Irrespective of stimulus novelty, morphine had little influence on the saccharin consumption of IC-lesioned rats. The results are discussed in terms of a lesion-induced disruption of (i) a reward comparison mechanism and (ii) the perception of taste novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
In Exp I extensive hippocampal lesions retarded, but did not prohibit, the conditioning of a strong taste aversion to physiological saline (the CS) in 16 male Holtzman albino rats when illness (the UCS) was induced by apomorphine injection 15 min following ingestion of the saline. In Exp II hippocampal lesions reduced the aversiveness of novelty in a drinking fluid for 21 thirsty Ss. It is suggested that the mild impairment of taste aversion learning in Ss with hippocampal lesions was not the result of destruction of mnemonic mechanisms that serve to span the long CS-UCS interval but rather that the reduced intensity of the aversion resulted from a lesion-altered neophobic disposition that weakened the saliency of the novel flavor CS. (51 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Reports an error in "Effects of Central and Basolateral Amygdala Lesions on Conditioned Taste Aversion and Latent Inhibition" by Justin St. Andre and Steve Reilly (Behavioral Neuroscience, 2007[Feb], Vol 121[1], 90-99). Figure 4 on p. 96 (Results and Discussion, Experiment 2: Behavioral section) was incorrect. The correct figure is provided in the erratum. (The following abstract of the original article appeared in record 2007-02025-008.) The present study examined the effects of neurotoxic lesions of the central nucleus (CNA) and basolateral complex (BLA) of the amygdala on conditioned taste aversion (CTA) in a latent inhibition design. In Experiment 1, lesions of the CNA were found to have no affect on CTA acquisition regardless of whether the taste conditioned stimulus (CS) was novel or familiar. Lesions of the BLA, although having no influence on performance when the CS was familiar, retarded CTA acquisition when the CS was novel in Experiment 2. The pattern of results suggests that the CTA deficit in rats with BLA lesions may be a secondary consequence of a disruption of perceived stimulus novelty. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Control rats rapidly learned to avoid drinking either a sucrose solution (Exp 1) or an NaCl solution (Exp 2) when the taste was paired with illness. These rats also produced aversive reactivity to each of these solutions in a taste reactivity test. Rats that lacked gustatory cortex (GC) learned to avoid drinking sucrose and NaCl, albeit at a slower rate than control rats. GC rats failed to display aversive reactivity to these tastes. The GC rats did show normal aversive reactivity to a strong quinine HCl solution during additional tests. It is suggested that the avoidance developed by GC rats did not entail a palatability shift of the conditional stimulus as it did in control rats. This altered learning strategy may account for the consistent learning deficits found in GC rats trained to avoid tastes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The functional relation between restricted damage to ventral primary somatosensory neocortex and the ability of rats to acquire conditioned taste aversions (CTA) was examined by a combination of behavioral and neurohistological techniques. Ss were 84 male Long-Evans hooded rats. Lesions confined exclusively to the established gustatory neocortex (GN) did not disrupt CTA acquisition, nor did lesions confined to suprarhinal cortical areas ventral to the GN. Lesions that encroached on dorsal prepiriform and insular cortices produced CTA acquisition deficits and damaged a large proportion of efferent projections to the prefrontal and precentral neocortex. Lesions of dorsal prepiriform and insular cortices did not modify taste preference–aversion thresholds to any of the 4 taste modalities. It is concluded that ventral somatosensory neocortical fields, including the established GN, do not mediate CTA acquisition and that rhinal cortices ventral and posterior to the GN are preferentially involved in associative learning for tastes and illness. (51 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Notes that water is not tasteless to humans, but rather can produce any of the 4 basic taste qualities if it is preceded by adaptation to an appropriate substance. After adaptation to the NaCl in saliva, water tastes predominantly bitter. Results of detection threshold experiments with 9 male undergraduates and the author as Ss demonstrate that this bitter water taste can be confused with solute tastes so that some detection thresholds for NaCl may actually represent water thresholds instead. Water also appears to have a taste after adaptation to saliva in the rat. Just as with humans, some apparently low thresholds for NaCl detection in rat may be water-taste thresholds. The apparently high preference threshold for NaCl in rat may be a true NaCl threshold based on adaptation to saliva. (116 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Examined the involvement of presumed gustatory thalamocortical projections in conditioned taste aversion (CTA) learning, using 108 male Long-Evans rats in 4 experiments. Neuroanatomical and neurobehavioral manipulations in the ventrolateral neostriatum were used. Findings demonstrate that projections from posterior ventromedial thalamic nuclei, parvicellular division (VPMpc), and thalamus to the anterior insular gustatory neocortex (AIGN) were essential for normal CTA learning. Because both VPMpc thalamus and the AIGN each have been implicated as functional substrates of CTA learning, the present results suggest that the gustatory thalamocortical relay per se is necessary for normal taste-illness learning. (40 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号