首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
澜沧江某水电工程大型倾倒变形体边坡成因机制   总被引:1,自引:0,他引:1       下载免费PDF全文
在现场调查资料的基础上,结合倾倒变形体边坡地形地貌特征、地层岩性特征、结构面发育特征、河谷地应力以及岩体力学性能的差异等方面对澜沧江某水电工程大型倾倒变形体边坡的成因机制进行了综合分析。结果表明:该大型倾倒变形体边坡地形上呈单薄、突出、三面临空的山梁;地层以薄层陡倾状岩体为主,并且在河谷下切过程中,砂岩和板岩将会出现差异卸荷回弹;边坡岩体中发育与倾倒变形体变形方向一致或相反的裂隙,有利于倾倒变形体的初始变形;河谷下切之前现今地面线附近岩体原始积累的地应力较高,当河谷下切至现今地面线时岩体卸荷强烈;在上述原因的共同作用下,倾倒变形体边坡向临空面发生大规模的倾倒变形。  相似文献   

2.
为分析反倾岩质边坡弯曲倾倒破坏机理,通过对反倾层状岩体的物理力学解析及悬臂梁极限平衡分析模型的优化,开展反倾层状岩体变形发育深度计算研究。基于流变理论,采用广义开尔文流变模型,以变形发育极限位置处零应变作为发育深度的界定标准,获取了反倾层状倾倒变形体的发育深度。进而,将两种方法推导出来的计算式进行工程实例分析,并与前人的研究成果进行对比分析,探讨其工程实际应用价值。实例计算表明:优化下的悬臂梁模型比广义开尔文流变模型计算的发育深度更接近实际情况;反倾层状边坡倾倒变形破坏发展演化的四个阶段为初始弯曲变形阶段、累计弯曲变形阶段、板裂体折断破裂阶段、破坏阶段。研究成果对反倾层状岩质边坡整体稳定性判别及失稳规模预测具有一定理论意义和参考价值。  相似文献   

3.
新龙水电站是雅砻江上游梯级电站开发甘孜—新龙段4级开发中的第4级电站,是以发电为主的电站。水电站右岸近坝库段大范围发育有倾倒变形体,总体积约1 600万m3。该变形体在水库蓄水后,受地下水位升高、浸泡影响,变形体岩体的抗剪强度指标降低,极易导致变形体边坡失稳,从而对大坝、泄洪(放空)洞、电站引水口等建筑物安全构成威胁。针对该倾倒变形问题,通过对倾倒变形体工程地质特性及失稳模式等分析,建立边坡离散元的数值计算模型,得出岩体倾倒变形特征和变形破坏机理发展过程,从倾倒变形体的变形特征上来看(以地震工况为例),边坡变形体破坏主要位于强倾倒变形体中,弱倾倒变形体破坏不明显。强倾倒变形体主要表现为向临空面方向发生倾倒—弯曲—拉裂—折断的变形破坏模式,先在坡脚及顶部发生剪切破坏,中间形成锁固段,后剪切贯通整体下滑,成果可为倾倒变形体的稳定性评价及工程开挖施工提供借鉴。  相似文献   

4.
苗尾水电站坝址区大范围发育由砂岩板岩互层的弯曲倾倒变形体,在水库蓄水后,地下水位升高,导致岩体和结构面软化,抗剪强度降低,容易引发倾倒体的持续变形甚至失稳破坏,进而可能威胁到大坝安全。针对蓄水作用下右岸坝后倾倒变形体稳定问题,采用UDEC离散元分析方法,分析了地下水位升高过程中该边坡的变形演化特征。结果表明,受坡体水位升高影响,边坡倾倒体变形将持续发展,当坡体水位达到1 390 m时,坝头坡体浅层的变形可达到8~18 mm,对大坝变形及稳定性的影响有限。建议现场加强水库蓄水期间的变形监测和地下水位监测,进一步研究水库蓄水与边坡变形演化的内在机制。  相似文献   

5.
陡倾层状岩体的深层倾倒变形是我国西南深切河谷常见的一种地质现象。第四纪以来,伴随青藏高原隆升,强烈的河谷下切是导致这一现象的重要原因。以澜沧江上游河谷哑贡倾倒变形体为例,采用底摩擦重力试验和数值计算的方法,对河谷下切过程中该倾倒变形体的形成机制和过程进行了研究。结果表明:该边坡随着河谷下切、岩体卸荷及边坡应力场的重新分布,岩体中形成了较深的应力松弛区,主应力方向调整为重力方向,应力松弛区中陡倾的层状岩体向河谷方向发生倾倒变形。根据物理试验特征及数值分析结果,倾倒变形演化过程可归纳为:卸荷(回弹拉裂阶段)、变形(裂隙发育阶段)及折断(裂隙贯通阶段)。  相似文献   

6.
陡倾产状岩体倾倒变形是自然界常见的一种地质灾害,对工程建设存在一定危害。水库大坝两坝肩开挖,多为基岩开挖,因此伴随着基岩岩体卸荷倾倒变形体发育。根据现场倾倒变形体的特征,进行形成因机制及边坡破坏模式分析和稳定性计算分析。  相似文献   

7.
倾倒变形体发育规律研究在倾倒变形防治规划及水电工程选址中具有重要意义。统计国内的倾倒变形体,有助于分析我国倾倒变形体发育规律。根据倾倒变形体的分布提出倾倒变形体区域地质易发性分区研究范围,选取地貌、地层时代、地震烈度、构造应力分布为影响因子,针对倾倒变形体进行区域地质易发性区划评价。选择在西部地区发育的11条主要河流上的水电工程倾倒变形体进行地理位置易发性区划评价,分析不同等级中倾倒变形体分布特点与发育要素(岩性、坡高、坡角、发育高程、水平及垂直发育深度)的对应关系。结果表明:倾倒变形体主要分布在四川、青海、云南3省;横断山脉“极大、大起伏高山”区属于倾倒变形体地质极易发区;雅砻江中游、澜沧江中上游、黄河上游、大渡河上游、岷江上游等河流属于倾倒变形体地理位置易发性较高区段。通过此研究,可为西南倾倒变形体防治规划及水电工程选址提供一定的参考依据。  相似文献   

8.
倾倒变形是河谷地区层状岩质边坡一种典型的变形破坏方式。星光三组倾倒变形岩体位于溪洛渡水电站库区,变形体范围内地层从寒武系筇竹寺组至志留系连续分布,碎屑岩与碳酸盐岩表现出复杂的倾倒变形特征。为全面评价变形体的稳定性,借鉴《水力发电工程地质勘察规范》,建立倾倒变形分带标准并确定各带的岩体质量级别;在此基础上,综合各类岩体的岩石室内试验成果和坝基岩体力学参数经验值,采用工程类比方法确定出各变形带不同岩性的物理力学参数;选取岸坡强变形区,运用极限平衡方法进行稳定性计算,其结果与蓄水后岸坡表现出的变形迹象吻合。研究结果对倾倒变形岩体的稳定性评价有一定的借鉴意义。  相似文献   

9.
倾倒破坏是反倾层状岩质边坡一种主要的变形破坏模式。基于悬臂梁极限平衡理论研究反倾层状岩质边坡变形破坏是一种既注重变形过程又注重力学分析的可行方法。以地质分析为基础,基于梁板上、下层面间的正应力为三角形分布的假设,根据悬臂梁极限平衡分析模型,通过物理力学解析,开展反倾等厚层状岩质边坡倾倒破坏折断深度的研究,并推导出其计算公式。通过对一个工程实例的计算,得出其折断深度与实际现场调查的倾倒变形发育相近,并采用离散单元法(DEM)数值模拟手段进行了分析验证。实例计算表明,推导的公式能较准确地计算反倾等厚层状岩质边坡倾倒破坏折断深度。研究成果对反倾层状岩质边坡稳定性评价与防治具有一定的理论指导意义和应用价值。  相似文献   

10.
倾倒变形破坏是岩质边坡破坏的主要模式之一。由于倾倒变形体的破坏机制与滑坡、危岩体等地质体的破坏机制不同,其后缘边界在特定条件下,呈"叠瓦"式不断向后拓展,是一个不断变化发展的界面,现有的计算方法很难完全模拟其变形破坏发展过程。因此对倾倒变形体边坡在施工期过程监测非常重要,通过监测实时掌握边坡变形的发展趋势及范围,为设计动态调整边坡施工方案及指导安全施工提供监测数据支撑,并对边坡安全状况及时预测、预报和预警,避免施工安全事故的发生。  相似文献   

11.
倾倒变形破坏是高山峡谷地区反倾薄层状斜坡的典型失稳形式之一。为了分析云南苗尾水电站库区倾倒变形体边坡(QD8)稳定性,对其岩体结构进行调查,并分析了两种破坏形式。采用极限平衡法,计算倾倒变形体边坡在天然、地震、蓄水和暴雨4种工况下的稳定性。结果表明:边坡最小安全系数为1.18,整体稳定性较好;运用离散元法,得到边坡的应力和位移分布,最大位移为0.14 m,存在局部坍塌现象,因此倾倒变形体边坡(QD8)稳定性较好。研究成果可为倾倒变形体边坡稳定性分析提供借鉴。  相似文献   

12.
某电厂后边坡为高陡边坡,且发生倾倒,岩体破碎,边坡失稳将危及电厂安全。针对边坡不同的失稳破坏模式,可以采取相应的防治措施。为对电厂后边坡防治设计提供理论支撑,依据边坡岩体结构、变形破坏型式以及风化、波速等差异,自外向内将边坡岩体分为极强、强、弱3个倾倒变形区。综合分析各变形区边坡的形态、岩性组成等,结果表明:极强倾倒变形区岩体呈散体结构,易发生蠕滑-拉裂式滑坡;强倾倒变形区岩体呈碎裂、镶嵌结构,倾向坡外结构面发育,存在蠕滑-拉裂式滑塌;弱倾倒变形区岩体一般不会出现自身失稳破坏。  相似文献   

13.
11坝岸(边)坡外部变形监测系统的建立小浪底坝址区处于低山丘陵区,河流走向近东西,河谷两岸山体高程为350~500m,枯水位高程135m左右,河谷形态呈不对称U型谷,谷低宽350~600m。坝址及近坝库区右岸由软硬相间的砂页岩互层组成,其层状岩体顺向坡结构受狂口背斜层间错动作用,有多层泥化夹层。岸坡内有多处蠕滑变形体,其变形特征为:沿泥化夹层蠕滑,带动“层状砌体结构”的砂岩节理块体发生倾倒转动,形成颇具特色的“倾倒滑移”变形模式,个别变形体已发展成为古滑坡。这些蠕滑变形体发生于河谷形成期,与河谷…  相似文献   

14.
陡倾产状岩体倾倒变形是自然界常见的一种地质灾害,对工程建设存在一定的危害。根据倾倒变形体的特征,进行边坡破坏模式和稳定性计算分析,并综合考虑倾倒体所处部位、规模、工程地质条件,计算出安全系数并提出处理方案。  相似文献   

15.
澜沧江上游梅里石3号巨型古滑坡成因机制研究   总被引:1,自引:0,他引:1  
以梅里石3号滑坡为例,经过详细工程地质勘察,定性分析了滑坡的成因机制。结果表明,该滑坡是反倾岩体倾倒变形破坏的产物,其成因机制具有一定的特殊性及研究价值。采用离散元和有限元相结合的方法,研究澜沧江快速下切过程中原始斜坡发生倾倒变形破坏的全过程,即弯曲变形、倾倒—弯曲、倾倒—折断、蠕滑—拉裂4个阶段。地质分析表明滑坡为倾倒变形体发生整体失稳形成,数值模拟中岩体倾倒变形各阶段的变形破坏特征与地质分析相互印证,与实际情况相符。  相似文献   

16.
针对互层反倾岩质边坡倾倒破坏问题,在综合考虑软岩和硬岩力学性质差异的基础上提出了"组合悬臂梁"模型,并对各悬臂梁进行了力学分析。依据最大拉应力破坏准则建立平衡方程,计算出硬岩岩层的折断深度,并利用"分段叠加法"给出了组合岩层坡表处挠度计算公式。根据澜沧江苗尾水电站库区左岸一典型反倾软硬互层岩质边坡岩体参数,研究折断深度对组合岩层挠度的影响,结果表明:硬岩岩层折断深度越大组合岩层坡表处挠度越大;折断深度一定时,随着软岩与硬岩厚度比的增大、弹性模量比减小,组合岩层挠度增大;组合岩层挠度较大区域集中在岩层倾角60°附近,推测组合岩体岩层倾角接近60°时容易发生倾倒变形。  相似文献   

17.
分析黄河班多水电站左岸Ⅰ号倾倒体发育的地质环境和倾倒变形体的主要特征:岩层倾角自岸坡水平向里由缓变陡;倾倒、弯曲、拉裂变形显著;弹性波速较低等。根据这些特征,运用地质-力学分析法阐述倾倒体的变形机制;用离散元方法对地质原型进行模拟。分析表明倾倒体的失稳破坏方式主要以沿潜在折断面的剪切蠕滑为主,并伴以沿板理面发生错动、倾倒,最终将以滑坡形式结束整个变形过程。  相似文献   

18.
以澜沧江某水电站左坝肩边坡为研究对象,通过野外调查发现,坡体广泛发育一类同时具有碎裂结构和显著松动变形的特殊岩体,由此提出了碎裂松动岩体的概念。对其发育特征进行研究后发现,碎裂松动岩体不仅具有从坡表往里依次呈现出散体-碎裂-块裂的结构特征,而且其发育深度与极强卸荷带也具有较好的对应关系。鉴于此,提出了其划分标准:将具有散体-碎裂-块裂结构的岩体深度作为其结构上的发育深度,而极强卸荷带发育深度则作为其卸荷上的发育深度,取二者的平均值作为最终的发育深度。为了验证利用该标准划分的结果能够指导边坡开挖,采用UDEC进行模拟,结果表明:边坡开挖后,整体变形小、稳定性较好,仅局部开挖面附近出现小规模的危岩体。建议沿划分的碎裂松动岩体发育深度对该边坡进行开挖,2 880 m高程上、下开挖坡比分别为1∶1.5和1∶1。通过碎裂松动岩体的划分,能够为此类特殊的边坡岩体合理的开挖深度的确定提供参考。  相似文献   

19.
倾倒变形是反倾层状岩质边坡的一种典型破坏模式,为了研究不同岩层倾角对反倾层状岩质边坡倾倒变形的影响,以澜沧江上游古水水电站坝前倾倒变形体为原型,从岩层倾角变化的角度出发,利用大型土工离心机试验分析了反倾层状岩质边坡的失稳破坏过程、变形演化特征与最终失稳模式等。结果表明:(1)反倾层状斜坡的变形演化过程基本概括为岩层压密-坡脚压裂阶段、弯折面形成-部分失稳阶段和弯折面贯通-彻底失稳3个阶段,岩层倾角的改变并不会影响斜坡阶段性演化过程;(2)岩层倾角越大的斜坡,斜坡形成弯折面所需时间越短,失稳破坏发生后坡体贯通性倾倒破坏深度更大,对应的变形范围越大,折断岩层的破坏程度越剧烈;(3)岩层倾角变化会导致斜坡的倾倒变形过程与最终失稳模式存在一定差异。倾角较小的55°和70°模型斜坡前部岩层在重力作用下发生明显弯曲倾倒变形,最终以“倾倒-弯曲-滑移”的失稳模式发生破坏;倾角最大的85°斜坡岩层发生的弯曲变形较小,最终以“倾倒-折断-崩塌”的模式发生破坏。研究结果对大型工程项目的顺利开展具有一定指导意义。  相似文献   

20.
根据野外现场调查,某水电站上、中坝址区左右岸的倾倒变形现象存在巨大的差异,即右岸岸坡的倾倒变形无论是规模还是变形深度都比左岸大。针对两岸坡体倾倒变形差异化发育的问题,利用地质资料建立2个离散元模型,以分析倾倒变形的产生原因,并探究右岸发育的韧性剪切带和蚀变岩体对倾倒变形的影响。结果表明,相较于左岸,右岸坡体中有利的原生结构面是岸坡产生大规模浅层块状倾倒变形的控制性因素;不同高程的韧性剪切带和蚀变带构成软弱基座,使岸坡产生压缩—倾倒—拉裂变形,进一步增大了左右岸坡倾倒变形之间的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号