首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We focus on fly ashes of different sizes and their alkali-activation on ceramic products. Backscattered electron imaging-energy dispersive X-ray spectroscopy was used to classify coal fly ash particles according to particle size and to study the pre-activation of particles with different sizes. Secondary electron imaging-energy dispersive X-ray spectroscopy was used to study the role of coal fly ash particles of different sizes in ceramic bodies before and after alkali-activation. Ash particles can be divided into three classes based on size: clay-, quartz- and feldspar-like particles, which act as clay, quartz and feldspar, respectively, in ceramic bodies. The pre-activation process contributes to the plasticity of ash particles, the crystal skeleton role of clay-like particles and the fluxing agent role of feldspar-like particles, so preprocessing can improve the performance of ash-based ceramic tiles significantly. This research provides a new pretreatment method for coal fly ash in ceramic fields.  相似文献   

2.
张世华 《硅酸盐通报》2018,37(1):210-214
采用石灰石粉对低品位粉煤灰进行煅烧改性,利用X射线衍射、扫描电镜和能谱分析等方法对改性粉煤灰的矿物组成和化学组成进行表征.同时测定了掺改性粉煤灰的水泥浆体的抗压强度和自收缩,并采用背散射扫描电镜和压汞测孔仪研究了掺改性粉煤灰水泥浆体的微观结构.结果表明,粉煤灰经煅烧改性生成了水硬性矿物β-C2S,水化可生成CSH凝胶,改善了等外粉煤灰颗粒与水泥基体的界面粘接,降低了复合水泥浆体的孔隙率和自收缩,提高了复合水泥浆体的强度.  相似文献   

3.
Aggregation experiments on three fly ash samples in the size range of 0.023-9.314 μm were conducted in a uniform magnetic field. The fly ash particles were produced from combustion of three different bituminous coals. The coals were originated Dongshen, Datong and Xuzhou of China, respectively. A fluidized bed aerosol generator was used to disperse the fly ash particles to generate a constant aerosol. The aerosol particles aggregated when passing through the magnetic field. The variation of particle number concentration caused by particle aggregation was measured in real time by an Electrical Low Pressure Impactor (ELPI). The effects of several parameters, such as particle size, magnetic flux density, particle residence time in the magnetic field, total particle mass concentration and average gas velocity, on particle aggregation were examined. Experimental results indicated that removal efficiencies are the highest for particles with sizes in the middle of the size ranges tested. Increasing magnetic flux density, total particle mass concentration, particle residence time in the magnetic field or by reducing average gas velocity can increase removal efficiencies of single-sized and total fly ash particles. When fly ash particle magnetization reached saturation state, further increase of the magnetic flux density will have no effect on particle aggregation. The single-sized and total particle removal efficiencies of the three fly ashes are different under the same operating conditions. The removal efficiency is the highest for fly ash generated from Dongshen coal, followed by fly ash from Datong coal, and then fly ash from Xuzhou coal. Particle number median diameters decreases with the increase in the total particle removal efficiencies. The model prediction of particle aggregation under high total particle mass concentrations conditions indicated that the single-sized and total particle removal efficiencies will increase greatly with the increase in total particle mass concentration. The model predicted total removal efficiencies of the three fly ash particles are 53%, 43% and 14%, for Dongshen, Datong and Xuzhou coals respectively when total particle mass concentration is 40 g/m3.  相似文献   

4.
This research is to study the effect of particle size of fly ash on packing effect and pozzolanic reaction of mortar when 20% of fly ash is used to replace Portland cement type I. Both effects can be determined by using fly ash and insoluble material which have almost the same particle size to replace Portland cement type I. Normally, the compressive strength of fly ash mortar is contributed from hydration reaction, packing effect, and pozzolanic reaction. For mortar mixed with insoluble material, the compressive strength is due to hydration reaction and packing effect. Thus, compressive strength due to pozzolanic reaction can be determined from the difference in compressive strength between fly ash mortar and insoluble material mortar. The results show that the strength activity index of fly ash mortar depends on the median particle size of fly ash and curing ages of mortar samples. At early ages, the strength activity index of fly ash mortar due to packing effect is higher than that due to pozzolanic reaction. At the ages of 3 to 90 days, the difference in strength activity index due to packing effect of fly ashes with median particle size of 2.7 and 160 μm is almost constant about 22% of the strength of standard mortar (STD). The differences in strength activity index due to pozzolanic reaction of fly ashes with median particle size of 2.7 and 160 μm are 3%, 20%, and 27%, respectively, at the ages of 3, 28, and 90 days.  相似文献   

5.
以粉煤灰为原料,采用挤压成型和固态粒子烧结法制备管状粉煤灰基多孔陶瓷膜支撑体.采用TG-DSC技术对粉煤灰进行了热分析,采用SEM和XRD技术对样品的微观结构及物相组成进行了分析,并测定了样品的开孔率、抗压强度及空气渗透速率等性能指标.研究了烧结温度、保温时间和造孔剂添加量对支撑体性能的影响.结果表明:支撑体晶相组成主要为赤铁矿、红柱石和石英;烧结温度为1000 ℃,保温2 h,仅添加1%的粘结剂,不添加造孔剂的条件下制备出的管状支撑体综合性能最优,此时的支撑体孔隙率为44.95%,抗压强度为8.92 MPa,空气渗透速率为2.57×104 m3·h-1·m-2·MPa-1.  相似文献   

6.
The behaviour of 15 trace elements (As, Ba, Cr, Cu, Mn, Mo, Nb, Ni, Pb, Rb, Sr, V, Y, Zn and Zr) and 10 major and minor elements (Al, Ca, Fe, K, Mg, Na, P, S, Si and Ti) in coal during combustion in a power station has been studied. Synchronized sampling of pulverized coal, bottom ash and fly ash was undertaken over a limited time period. Fly ash morphology was studied by SEM and the mineral composition was studied by EDX and XRD. Major, minor and trace elements were determined by XRF and AAS. Differences between the composition of the ashes of pulverized coal, bottom ashes and fly ashes have been observed. As, Cu, Mo, Pb and Zn were concentrated in the fly ash. The relationship between the composition of the fly ashes and their particle size was studied. Enrichment factors were calculated for each element in different size fractions. As the particle sizes of fly ash decrease, the concentrations of As, Cu, Mo, Pb and Zn increase. From the different composition of bottom ashes and fly ashes (and relying on the results of the characterization of the feed coal carried out in previous work), it can be assumed that pyrite and carbonates make a greater contribution to the furnace bottom ashes. Quartz carries through into the fly ash. This mineral is almost absent in the finest fractions, reflecting the absence of small quartz particles in the feed coal.  相似文献   

7.
《Ceramics International》2023,49(19):31559-31568
Oil-based drilling cutting pyrolysis residues (ODPRs) are one of the solid wastes from pyrolysis of the oil-based drilling cuttings (OBDCs) that need to be recycled as raw materials to avoid the possible pollution. In this study, a facile low-cost ceramic membrane for oil-in-water emulsions separation was prepared with ODPRs incorporating with fly ash as raw material. CaCO3 in ODPRs would decompose acting as pore-forming agent, and anorthite was formed in resultant membranes. The obtained membrane with 30 wt% ODPRs and 70 wt% fly ash fired at 1050 °C possessed apparent porosity of 38.2%, mean pore size of 0.4 μm, flexural strength of 13.1 MPa, and Darcy permeability of 1.06 × 10−13 m2. Consequently, commendable filtration performance for oil-in-water emulsions was presented. In addition, the ceramic membrane showed favorable recyclability and corrosion resistance. Leaching test indicated that the membrane is safe for oil-in-water emulsion separation. Hereby, this paper confirmed the availability of ODPRs for preparing ceramic filtration membranes, and provided a new environmental conservation way to treat oil-in-water emulsions that was consistent with the sustainable development goals.  相似文献   

8.
An experimental investigation on the effects of incorporating large volumes of fly ash on the early engineering properties and long-term strength of masonry mortars is reported. The effect of fly ash and its mean particle size (PD) on the variation of workability and strength has been studied. It was found that fly ash and its mean particle size play a very significant role on the strength of masonry mortars. It has been observed that the early-term strength, except the mortars incorporating coarse fly ash (CFA), was slightly influenced by the replacement with fly ash. The long-term strength (both the bond strength and the compressive strength) will significantly increase, especially for the bond strength of mortars incorporating coarse fly ash. It was also found that the bond strength significantly increased as the mean particle size of fly ash decreases after 28 days curing. However, the 7-day strength was little influenced by fly ash particle size. The fluidity of composite mortar enhanced due to replace cement and lime with fly ash, and the mean PD of fly ash significantly influenced the workability.  相似文献   

9.
为了解决U-gas粉煤气化工艺飞灰过滤器装置中陶瓷滤芯的断裂问题,分析了陶瓷滤芯和金属滤芯的性能差异,在装置中安装了国产改进2050型Fe_3Al金属滤芯并投运试验,研究了投运后合成气及飞灰特性、滤芯的微观形貌、过滤效率、流量-压差曲线、滤饼渗透性等特性。结果表明,在与陶瓷滤芯相同过滤精度条件下,Fe_3Al金属滤芯具有孔隙率高、渗透性高、压溃强度大等优势。投运结果表明,Fe_3Al滤芯投运3个月以来无断裂故障,在相近工况条件下,Fe_3Al滤芯运行平衡压差相比陶瓷滤芯下降了50%,且水洗塔悬浮物固含量由1 000~2 000 mg/L下降至100~500 mg/L。  相似文献   

10.
Ceramic microfiltration membranes (MF) with narrow pore size distribution and high permeability are widely used for the preparation of ceramic ultrafiltration membranes (UF) and in wastewater treatment. In this work, a whisker hybrid ceramic membrane (WHCM) consisting of a whisker layer and an alumina layer was designed to achieve high permeability and narrow pore size distribution based on the relative resistance obtained using the Hagen-Poiseuille and Darcy equations. The whisker layer was designed to prevent the penetration of alumina particles into the support and ensure a high porosity of the membrane, while the alumina layer provided a smooth surface and narrow pore size distribution. Mass transfer resistance is critical to reduce the effect of the membrane layers. It was found that the resistance of the WHCM depended largely on the alumina layer. The effect of the support and whisker layer on the resistance of the WHCM was negligible. This was consistent with theoretical calculations. The WHCM was co-sintered at 1000?°C, which resulted in a high permeability of ~?645?L?m?1 h?1 ;bar?1 and a narrow pore size distribution of ~?100?nm. Co-sintering was carried out on a macroporous ceramic support (just needed one sintering process), which greatly reduced the preparation cost and time. The WHCM (as the sub-layer) also showed a great potential to be used for the fabrication of ceramic UF membranes with high repeatability. Hence, this study provides an efficient approach for the fabrication of advanced ceramic MF membranes on macroporous supports, allowing for rapid prototyping with scale-up capability.  相似文献   

11.
Quartz and clay are substituted gradually by fly ash using a triaxial ceramic formulation under simulated industrial conditions and the effects of fly ash substitution on the macroscopic properties and microstructures of the sintered ceramics are evaluated systematically. With the substitution of 35 wt% (1250 °C), the ceramic sample exhibited optimal properties, including linear shrinkage of 15.61%, bulk density of 2.39 g cm-3, water absorption of 0.62% and flexural strength of 41.70 MPa, due to the accelerated densification and fly ash-spurred needle-shaped mullite. The microstructure analysis shows that the sintered matrix consists of three types of particles, quartz-, clay- and feldspar-like particles showing sintering behavior with respect to filling the glassy matrix with preserved morphology, precipitating mullite crystals, and fusing with the surrounding glassy matrix, respectively. The strength of the fly ash - containing ceramics is analyzed by the dispersion-strengthening mechanism and porosity and the results indicate that the fly ash particles affect the mechanical strength due to Griffith flaws when the total porosity is less than 25% and pores at higher total porosity. This study provides a viable strategy to recycle industrial fly ash in the production of architectural ceramics.  相似文献   

12.
通过研究粉煤灰自身在硫酸盐和石灰双重激发下产生的活性、粉煤灰的碱性以及颗粒Zeta(电位)等,分析不同粉煤灰对脱硫石膏-矿渣-粉煤灰复合胶凝材料力学性能的影响。结果表明,粉煤灰的种类对复合胶凝材料的力学性能影响很大,粉煤灰本身活性的差异不是造成这种影响的主要原因,其主要原因是粉煤灰对矿渣粉的激发程度。粉煤灰的碱性对矿渣粉的激发影响很大,对于普通含钙粉煤灰,碱性越强,激发越好,复合胶凝材料力学性能越好。矿渣粉颗粒的Zeta电位为负,因此粉煤灰颗粒表面的正电荷密度过高,不利于矿渣粉活性的激发。  相似文献   

13.
多喷嘴对置式气化炉中飞灰性质   总被引:3,自引:1,他引:2       下载免费PDF全文
廖胡  郭庆华  梁钦锋  张健  廖敏  于广锁 《化工学报》2009,60(11):2918-2923
On a laboratory scale opposed multi-burner gasifier (OMBG), the fly ashes at different sampling mouths are collected and analyzed by SEM, EDS, XRF and Malvern mastersizer. Most fly ash particles produced in the gasification are irregular, aggregate or spherical. As for the composition of the particles, carbon is the main content, while S, Fe and Na get enriched. At the same time, the concentration of Al and Si in the fly ash particles is lower than that in the original slag. From the nozzle plane to the exit of gasification chamber, the carbon content of particles decreases along the axes of gasifier. The carbon content of particles decreases rapidly from the nozzle plane to No. 7 sampling mouth and declines slowly from No. 7 sampling mouth to the chamber exit. The size of particles generated in the gasification appears a triple-humped-distribution with peaks at 0.1—0.2 μm, 2 μm and 14 μm. The particle size distribution in different sampling places is different. Above the impact plane, more ultra-fine particles are found and coarse particles are larger in location near the impact plane. In symmetrical up and down locations of the impact plane, the particle size distributions are similar, but there are more coarse particles below the impact plane. The coarse particle size decreases and the proportion of fine particles increases below the impact plane, while the proportion of coarse particles increases at the chamber exit.  相似文献   

14.
Coal fly ash, a solid state waste massively produced from coal combustion, is considered to be highly hazardous to the environment due to its persistently toxic trace elements. High-value added waste recycling is a promising technique to address this issue. In this work, a waste-to-resource strategy is proposed for design of highly porous whisker-structured mullite ceramic membranes derived from waste coal fly ash and Al(OH)3 as raw materials and MoO3 as a single sintering additive. These were characterized in terms of their dynamic sintering behavior, shrinkage, bulk density, porosity, phase evolution, microstructure, pore size distribution, N2 permeation flux, and mechanical strength. Addition of molybdenum trioxide effectively inhibited the sintering densification of membranes while at the same time forming a metastable low viscosity liquid at lower temperatures. This enables formation of a novel and more highly porous whisker-interlocked structure and accelerates the growth of mullite whiskers with controllable morphologies. Without degradation of mechanical properties, the open porosity increased significantly from 41.65 ± 0.13% to 58.14 ± 0.15% with increasing MoO3 content from 0 to 20 wt.% without any pore-forming agent, while shrinkage and pore size decreased. The method proposed in this study is expected not only to give a new and facile insight for high-value added recycling of waste coal fly ash but also to fabricate low-cost high performance ceramic membranes with novel structures for further environmental applications.  相似文献   

15.
毛恒洋  邱鸣慧  范益群 《化工学报》2017,68(3):1224-1230
以 PbZrxTi1-xO3(PZT)压电陶瓷粉体为原料,通过干压成型的方法制备多孔PZT陶瓷膜,考察了煅烧温度对多孔PZT陶瓷膜的机械强度、孔隙率以及纯水渗透性能的影响。当煅烧温度为950℃时,可制备出纯水渗透率为850 L·m-2·h-1·MPa-1,孔径为300 nm,机械强度为47.8 MPa,孔隙率为34%的多孔PZT陶瓷膜。在此基础上,考察了极化温度与极化电压对多孔PZT陶瓷膜压电性能的影响,并对极化后的PZT压电陶瓷膜进行萃取和表面等离子刻蚀处理。结果表明:极化温度为120℃、极化电压强度为4 kV·mm-1,极化后经热乙醇萃取及表面等离子刻蚀4 min后,多孔PZT压电陶瓷膜在外加交流电为20 V时,产生的共振振幅信号值达34.8 mV。将制备的多孔PZT压电陶瓷膜在粒径为600 nm的含油乳化液中进行过滤实验,发现陶瓷膜两端未加交流电时,其通量在2 h内衰减至4%。而加交流电后,其稳定通量可维持在20%左右,表明制备的多孔PZT压电陶瓷膜具有良好的抗污染效果。  相似文献   

16.
In order to develop low cost ceramic membranes and effectively utilize abundantly and dumped waste agriculture, fabrication of green silica based ceramic hollow fibre membranes from waste rice husk was evaluated. Rice husk was converted into amorphous and crystalline silica based rice husk ash (ARHA and CRHA) by burning process at 600?°C and 1000?°C, respectively. The properties of silica based rice husk ashes were studied by transmission electron microscopy (TEM), x-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), BET analysis, thermogravimetry and differential thermal analysis (TG/DTA) and x-ray fluorescence (XRF). Effect of silica content and sintering temperature towards membrane fabrication were investigated and characterized in term of morphological properties, mechanical strength, surface roughness, pore size distribution, porosity and pure water flux (PWF). The ceramic hollow fibre membrane (CHFM) prepared at 37.5?wt% CRHA content and sintered at 1200?°C achieved a good mechanical strength (71.2?MPa) and excellent porosity (50.2%). As a result, high PWF with value ~ 300?L/m2 h and stable at 20?min was obtained. Due to the excellent pure water flux, the prepared ceramic membrane from waste rice husk hold promise for water treatment application.  相似文献   

17.
The gas transport, triboelectrostatic beneficiation of coal combustion fly ash into carbon-rich and ash-rich products was studied relative to the effect of ash surface moisture. Increasing the humidity to which the ashes from American and Italian coal-fired utilities were exposed under process and ambient conditions affected carbon and ash separability. The effect of humidity and particle surface moisture became more important as particle size decreased: particles greater than 75 μm in diameter were nearly unaffected whereas particles smaller than 45 μm experienced up to a four-fold change in their separability upon changing their surface moisture contents. Although particle size influences the moisture adsorption, which in turn affects tribocharging, the decrease in adhesive forces between carbon and ash from otherwise intractable clusters during drying also may be a factor influencing triboelectrostatic beneficiation performance.  相似文献   

18.
刘勇  冯竟竟  于雷  刘洋  杨广帅  王舜 《硅酸盐通报》2017,36(5):1718-1722
对比研究了生物质灰与普通粉煤灰在粒度分布、颗粒形态、化学组成、活性指数等方面的不同,并开展了不同掺量生物质灰对水泥硬化浆体抗压强度的影响研究.结果表明:生物质灰颗粒形状不规则、平均粒径及粒径分布范围较大,具有特有的细长纤维状颗粒,且其活性组分Al2O3不足普通粉煤灰的三分之一;生物质灰的火山灰活性小于普通粉煤灰;相同掺量下,生物质灰-水泥复合胶砂各龄期的抗压强度均小于普通粉煤灰-水泥复合胶砂,生物质灰掺量越大,复合胶砂的强度相比纯水泥组下降程度越大;与普通粉煤灰相比,掺加生物质灰的硬化水泥浆体微观结构更为疏松多孔,特别是其特有的细长纤维状颗粒的存在.  相似文献   

19.
In this paper, in order to reduce the preparation cost of high-performance ceramic membrane, coal fly ash-based tubular ceramic membrane for flue gas moisture recovery was prepared, and its properties were optimized from two aspects: pore-forming agent (dextrin) content and sintering temperature. The results show that the ceramic membrane with dextrin content of 3 wt.% and sintering temperature of 1150 ℃ has the best performance. Through characterization, the ceramic membrane exhibits an open porosity of 42.0 %, mechanical strength of 26.6 MPa, average pore size of 0.49 μm, pure water flux of 5616 L/(m2 barh). And, it has excellent corrosion resistance in acid and alkali. In addition, the flue gas moisture recovery performance of coal fly ash-based tubular ceramic membrane was studied experimentally. The highest water recovery ratio and the highest recovered water flux is 87.7 % and 6.01 kg/(m2 h, respectively.  相似文献   

20.
透水混凝土在缓解城市内涝、噪音效应和热岛效应等方面具有广泛的应用前景,但多孔导致的强度偏低限制了其进一步推广应用。本文采用再生粗骨料和聚丙烯纤维配制高性能透水再生混凝土,设计五因素四水平正交试验,采用极差法分析水胶比、目标孔隙率、再生粗骨料取代率、粉煤灰掺量和聚丙烯纤维掺量对透水再生混凝土抗压强度、有效孔隙率、透水系数的影响规律。结果表明:透水再生混凝土抗压强度影响因素的主次顺序为目标孔隙率>再生粗骨料取代率>水胶比>聚丙烯纤维掺量>粉煤灰掺量;透水再生混凝土抗压强度最大为48.26 MPa,此时透水系数为1.96 mm/s;随着目标孔隙率的提高抗压强度呈线性下降的趋势;40%再生粗骨料等质量取代天然粗骨料后,透水再生混凝土的抗压强度达到28.7 MPa,提高119.08%,透水系数增加9.44%;掺入0.11%体积掺量的聚丙烯纤维后透水再生混凝土的抗压强度达到27.4 MPa,提高幅度为10.48%,而且透水性能不会降低。研究结果可以为高性能透水再生混凝土的制备提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号