首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
YAG:Ce transparent ceramics with high luminous efficiency and color render index were prepared via a solid state reaction-vacuum sintering method. Cr3+and Pr3+ were applied to expand the spectrum of YAG:Ce transparent ceramics. As prepared ceramics exhibit luminescence spectrum ranging from 500 nm to 750 nm, which almost covers full range of visible light. After the concentration optimization of Ce3+, Pr3+ and Cr3+, high quality white light was obtained by coupling the YAG:Ce,Pr,Cr ceramics with commercial blue LED chips. Color coordinates of the YAG:Ce,Pr,Cr ceramics under 450 nm LED excitation vary from cold white light to warm white light region. The highest luminous efficiency of WLEDs encapsulated by transparent YAG:Ce,Pr,Cr ceramic was 89.3 lm/W, while its color render index can reach nearly 80. Energy transfers between Ce3+  Pr3+ and Ce3+  Cr3+ were proved in co-doped ceramic system. Transparent luminescence ceramics accomplished in this work can be quite prospective for high power WLEDs application.  相似文献   

2.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   

3.
The realization of high color rendering index (CRI) is still a great challenge for high-power LEDs (hp-LEDs), which is hindered by the phosphor converter. In this work, based on the strategy of Ce3+ and Mn2+ multi-ion substitution, the single-structured LuAG:Ce,Mn ceramics with high CRI were prepared via regulating the ratio of tri-color (red, green, and blue) components. The effects of Mn2+-Si4+ pairs doping content on the crystal structure, morphologies, and luminescence properties were investigated in detail. The red emission centered at 590  and 750 nm were effectively compensated by regulating Mn2+ occupancy sites, resulting in a significant improvement of CRI. Pure white light with general CRI Ra up to 91.0, special CRI R9 reaching 37.9 and LE as high as 85.07 lm/W was achieved, when the hp-LEDs were constructed from related phosphor ceramic Ce02Mn7. These results suggest that the LuAG:Ce,Mn phosphor ceramics are highly promising color converters for hp-LEDs application.  相似文献   

4.
Highly transparent cerium-doped yttria ceramics were fabricated via a pressureless sintering method with an addition of 10 at.% La2O3 and 1 at.% ZrO2 as a binary sintering additive. With an increase in the Ce doping concentration from 0 to 3 at.%, the optical absorption edge of yttria ceramics exhibited a significant red shift from 290 to 380 nm as a result of the 4f–5d transition of Ce3+ and the charge transfer of Ce4+ (i.e., Ce4++e→Ce3+). For a 2-mm thick sample doped with 3 at.% Ce, the total ultraviolet radiation (UV) transmittance (220–400 nm) is only 1.7%, indicating a nearly complete UV absorption. Meanwhile, the specimens possess high in-line transmittance levels in both the visible and the infrared regions (i.e., >70% at 450 nm and ∼80% at 1100 nm). Additionally, the present specimens were confirmed to have good enough mechanical strength levels (∼165 MPa) and thermal conductivity (∼5 W/m·K), which are comparable or even better compared to those of previously reported transparent yttria ceramics. The results of this work indicate that cerium-doped transparent yttria ceramics are promising candidate materials for full-band UV-shielding window applications.  相似文献   

5.
《Ceramics International》2023,49(13):21941-21946
Cerium-doped yttrium aluminum garnet (YAG:Ce) based transparent ceramics have been widely used in fluorescent lighting as high-quality inorganic fluorescent conversion materials. This paper further explores the Mg2+-Si4+ ions doped YAG:Ce transparent ceramics by combining the solid-phase reaction method with vacuum hot-pressure sintering and implementing protection measures against hot-pressure mold contamination, and also investigates the effect of different Mg2+-Si4+ doping contents on the structure, transmittance and luminescence properties of the ceramics under hot-pressure sintering. In this work, pure-phase YMASG:Ce transparent fluorescent ceramics with a grain size of about 3-6 μm and clear and clean grain boundaries were obtained with an In-line transmittance of 67% at 800 nm. Under the excitation at 460 nm, the emission peak was red-shifted by 26 nm and the full width at half maxima (FWHM) was broadened with the increase of Mg2+-Si4+ content, which shows that the Mg2+-Si4+ ion pair effectively complements the absence of the red light component in the YAG:Ce emission spectrum. The optimized YMASG:Ce ceramics obtained high-quality warm white light with a low correlated color temperature (CCT) and a high color rendering index (CRI) under the excitation of the blue LED chip. This work proved the feasibility of vacuum hot-pressure sintering to prepare YMASG:Ce transparent fluorescent ceramics, and provided a new approach for studying YMASG:Ce-based ceramics, which was significant for the application of high-power visible laser illumination.  相似文献   

6.
Intense green emission is extremely significant to the color rendering index (CRI) of white LEDs. Various green-emitting YLuAG:Ce phosphor ceramics were successfully prepared by vacuum sintering. The effects of Lu3+ doping on structure and luminescence property were investigated in detail. In comparison with YAG:Ce, YLuAG:Ce ceramics own smaller grain size, better luminescence performance and higher thermal stability. The photoluminescence (PL) intensity of YLuAG:Ce ceramics increases by 23.6 % due to the “light scattering enhanced effect”. Furthermore, the Ce3+ emission is obviously blue-shifting from 533 nm to 519 nm, and the intensity of YLuAG:Ce ceramics reduces only about 8.9 % at 250 °C, showing better thermal stability (vs 11.1 % of YAG:Ce). The LE of LED packaged by YLuAG:Ce ceramic is up to 148.88 lm/W when the doping Lu3+ y is 2.1. The above results show that tailored YLuAG:Ce phosphor ceramic is a potential green-emitting color converter for high-power LEDs (hp-LEDs).  相似文献   

7.
《Ceramics International》2023,49(2):2051-2060
In the high-power white light LEDs/LDs area, obtaining phosphor-converted materials with high thermal stability and high luminous emittance with proper blue/yellow light ratio has been the main challenge in recent years. In this study, a group of (CexY1-x)3(ScyAl1-y)5O12 transparent ceramics with high optical quality were proposed to rise to that challenge. Their spectra were regulated by incorporating Sc3+, showing blue shifted emission bands (peak position from 554 nm–538 nm), blue shifted excitation bands (462–445 nm) and narrowed full width at half maxima (120–112 nm). Significantly, the prepared Ce:YScAG transparent ceramics (TC) exhibited decent thermal quenching performance with the photoluminescence intensity at 150 °C maintaining 88.7% of its original value at room temperature. The Sc incorporation impacted the atoms’ occupation and distance, crystal field splitting and energy band structure. Under remote LD excitation mode, the luminous efficiency of the prepared Ce:YScAG TC can achieve 164.8 lm/W. And even if the Ce3+ doping reaches 2.0 at%, the LE can still maintain 117.8 lm/W, exhibiting decent concentration quenching characteristic. Consequently, Ce:YScAG TCs have great potential as promising phosphor-converted materials in future high-power LED and LD white lighting.  相似文献   

8.
We first report the novel Ce3+-activated and Lu3+-stabilized gadolinium aluminate garnet (GAG) transparent ceramics derived from their precipitation precursors via a facile co-precipitation strategy using ammonium hydrogen carbonate (AHC) as the precipitant. The resulting precursors in liquid phase were substantially homogeneous solid solutions and could directly convert into sinterable garnet powders via pyrolysis. Substituting 35 at.% of Lu3+ for Gd3+ was effective to stabilize the cubic GAG garnet structure and transparent (Gd,Lu)3Al5O12:Ce ceramics were successfully fabricated by vacuum sintering at 1715°C. The ceramic transparency was improved by optimizing the particle processing conditions and the best sample had an in-line transmittance of ~70% at 580 nm (Ce3+ emission center) and over 80% in partial infrared region with a fine average grain size of ~4.5 μm. Transparent (Gd,Lu)3Al5O12:Ce ceramics have a short critical wavelength (<200 nm) and a maximal infrared cut-off at ~6.6 μm. Both the (Gd,Lu)3Al5O12:Ce phosphor powder and the transparent ceramic exhibited characteristic yellow emission of Ce3+ with strong broad emission bands from 490 to 750 nm upon UV excitation into two groups of broad bands around 340 and 470 nm. The photoluminescence and photoluminescence excitation intensities as well as the quantum yield were greatly enhanced via high-temperature densification. Both the phosphor powder and ceramic bulk had short effective fluorescence lifetimes.  相似文献   

9.
The Cr/Ce‐doped YAG transparent ceramic was fabricated by the solid‐state reaction in vacuum. The Cr/Ce‐doped YAG ceramic phosphor effectively complement the red spectral component and improve the color rendering performance when excited by blue light that is due to the effective energy transfer between Cr3+ ion and Ce3+ ion. However, the energy transfer from Ce3+ to Cr3+ ion leads to energy loss and therefore the luminous efficacy of the WLED which is composed of blue LED chip and the Cr/Ce‐doped YAG ceramic phosphor decreases. The composite phase structure of ceramic phosphor is designed for improving the extraction efficacy and increasing the luminous efficacy by breaking the total internal reflection (TIR) at the interface between air and ceramic.  相似文献   

10.
(Ce0.001Y0.999)3Al5O12 and (Ce0.001Y0.999)3(CrxAl1−x)5O12 (x=0.001−0.005) transparent ceramics were synthesized by the solid state reaction and vacuum sintering and their optical properties were measured. High quality white light was obtained when the Ce:YAG/Ce,Cr:YAG dual-layered composite ceramic was directly combined with commercial blue LED chip. A maximum luminous efficacy exceeding 76 lm/W at a low correlated color temperature of 4905 K was obtained. The color temperature can be controlled by variations of Cr3+ concentration and the ceramic thickness. Hence, the Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramic may be a promising candidate for white LEDs.  相似文献   

11.
Superior optical, thermal, and mechanical properties of transparent ceramics are very important in the applications of solid lasers, solid‐state lighting, and transparent armors. Herein, a series of (Dy0.03CexY0.97?x)3Al5O12 transparent ceramics were fabricated using vacuum reactive sintering method. Importantly, these Dy3+/Ce3+ codoped yttrium aluminum garnet (YAG) transparent ceramics served as single‐composition tunable white‐light phosphors for UV‐LEDs is developed for the first time. By combining with commercially available UV‐LEDs directly, the optimal chromaticity coordinates and correlated color temperature (CCT) are (x = 0.33, y = 0.35) and 5609 K, respectively. Notably, the codoping of Ce3+ enhances the luminescent intensity of Dy3+ ions while excited at 327 nm. The emission color of YAG transparent ceramics can be tuned from white to yellow through energy transfer between Dy3+ and Ce3+. These new phosphors, possessing of pure CIE chromaticity and environmentally friendly nature, are promising for applications in white UV‐LEDs.  相似文献   

12.
A series of Cs2BF6:Mn4+ (B = Ge, Si, Ti, Zr) red phosphors were synthesized by a precipitation-cation exchange route. The phase purity, morphology, and constituent were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical properties were investigated by photoluminescence (PL) spectra and high-resolution PL. Temperature-dependent PL examination at the range of both 273-573 K and 10-300 K was performed to investigate the emission mechanism of Mn4+ in these fluorides. The intensity for both zero-phonon lines (ZPLs) and vibration coupled emission of Mn4+ in these four systems with different crystal structures was investigated systematically. These phosphors present bright red emission under blue light (467 nm) illumination, among which Cs2GeF6:0.1Mn4+ shows the highest emission intensity with ultrahigh quantum efficiency of 94%. The white light-emitting diodes (WLEDs) fabricated with this sample, blue InGaN chips and commercial YAG:Ce3+ phosphor exhibited high luminous efficacy beyond 100 lm/w with high color rendering index (~88.6) and low color temperature (~3684 K).  相似文献   

13.
The microstructures and optical properties of 5%6Li: Ce3xY3(1-x)Al5O12 (x = 0.001, 0.003, 0.05, 0.01, 0.02) transparent ceramics prepared by solid-state reaction and vacuum sintering were investigated in this paper. The results revealed that the grain size of 6Li,Ce:YAG ceramics at this ration conditions is 4 μm–20 μm. With the doping of Ce3+, the transmittance of 6Li,Ce:YAG ceramics decreases from 82% (x = 0.001) to 67% (x = 0.02) at 800 nm, and the intensity of transmittance peak at 340 nm and 460 nm increases. The emission peaks show red shift at around 530 nm with the increasing of Ce3+ concentration.  相似文献   

14.
《Ceramics International》2016,42(6):6935-6941
Transparent YAG ceramics with different Ce3+ doping concentrations and various sample thickness have been fabricated via solid-state sintering under vacuum, for the purpose of high power white light emitting diodes (WLEDs). Their phase compositions were checked by X-ray diffraction (XRD). Optical and luminescence characteristics were investigated by transmittance, absorption spectra and photoluminescence examinations. It is found that by altering the Ce3+ concentration and sample thickness, the CIE color coordinates of the assembled LED devices can be tailored to white light region. More importantly, the color rendering index (CRI) of the LED devices got higher with decreased Ce3+ doping concentration and sample thickness. Meanwhile, the effect of Ce3+ concentration on the CRI was found more significant compared to that of the sample thickness. This study provides an efficient approach to tailor the luminescence properties, especially to improve the CRI of the WLEDs.  相似文献   

15.
《Ceramics International》2023,49(10):15700-15709
The solid-state reaction method was used to develop a series of Na2Ca1-x-yCexMnyP2O7 phosphors in an H2–N2 environment. The crystal structure of the pyrophosphate host, valence state of dopants (Ce, Mn), emission behavior of dopants, energy transfer mechanism, and thermal quenching behavior were thoroughly examined. Doping with Ce3+ and Mn2+ ions enhanced the photoluminescence characteristics of Na2Ca1-x-yCexMnyP2O7 while having negligible effect on the host's phase purity. Under 365 nm UV light irradiation, the addition of Ce3+ ion in the Na2CaP2O7 host revealed an asymmetric band with the typical blue emission around 415 nm and a shoulder around 455 nm. To obtain white light, Mn2+ ion was supplementarily substituted to the present system. When the Mn2+ ions concentration was elevated in the Na2CaP2O7 host, the emission intensity of 560 nm peak corresponding to Mn2+ transition enhanced significantly at the cost of Ce3+ emission of 415 nm. The systematic decrease of Ce3+ emission intensity and corresponding increase in the Mn2+ intensity with the increase in Mn2+ concentration indicated the possibility of effective energy transfer from Ce3+ to Mn2+ ions. The obtained results indicated that energy transfer from the Ce3+ to Mn2+ ions governed by dipole-quadrupole interaction. Because of the efficient energy transfer, the blue emission from Ce3+ and the orange red emission of Mn2+ provide white light from a single host along with high value of activation energy and low thermal quenching behaviour make the present phosphors to be suitable for high-power LEDs.  相似文献   

16.
《Ceramics International》2023,49(7):10692-10701
Phosphors that can emit broadband light from visible to near infrared (NIR) may have applications in the fields like white-light illumination and NIR vessel visualization, the investigation on single phase extra-broadband visible-NIR emitting phosphor is of great significance. Herein, an extra-broadband phosphor with tunable visible-NIR emission from 500 nm to longer than 900 nm (bandwidth >400 nm) was successfully prepared, which originates from the emission of Ce3+ (peaking at 573 nm), Cr3+ (peaking at 750 nm) and energy transfer from Ce3+ to Cr3+ in Y3MgAl3SiO12 garnet. The influences of Ce3+/Cr3+ doping concentration and working temperature were discussed systematically by luminescence spectra and decay curves. A visible-NIR full-spectrum phosphor-converted light emitting diode (pc-LED) fabricated with a 460 nm LED chip and Y3MgAl3SiO12:0.03Ce3+, 0.01Cr3+ can generate bright white light and broadband NIR light simultaneously. The co-doping of Ce3+ can perfectly compensate for the missing spectrum of Cr3+ in the visible region, thanks to the extra-broadband emission of Ce3+ in visible region and Cr3+ in NIR region, multifunctional advanced applications may be realized for the prepared phosphors.  相似文献   

17.
High optical quality Nd3+ and Ce3+ co-doped SrF2 (Nd3+, Ce3+: SrF2) transparent ceramics were fabricated successfully by a simple hot-pressing (HP) method. The phase composition, in-line transmittance, absorption and emission spectra, as well as the detailed energy transfer of Nd3+ and Ce3+ were investigated. In addition, the Judd- Ofelt (J-O) theory was adopted to evaluate the luminescence property. The SrF2 transparent ceramic samples exhibited excellent optical properties, up to 82 % at 400 nm and 92.5 % at 1054 nm. The fracture surface of SrF2 transparent ceramic proved nearly dense microstructure and EDS results demonstrated uniform doping. The addition of cerium ions changed the crystal field environment of neodymium ions and shifted the emission peak to higher wavelengths at 796 nm excitation. Moreover, through the energy transfer process of Ce3+ to Nd3+, the occurrence of concentration quenching phenomenon was avoided under 298 nm excitation, and the emission cross-section of 4F3/24I11/2 increased to 3.1 × 10−20 cm2.  相似文献   

18.
Transparent glass‐ceramics containing Ce3+: Y3Al5O12 phosphors and Eu3+ ions were successfully fabricated by a low‐temperature co‐sintering technique to explore their potential application in white light‐emitting diodes (WLEDs). Microstructure of the sample was studied using a scanning electron microscope equipped with an energy dispersive X‐ray spectroscopy. The impact of co‐sintering temperature, Ce3+: Y3Al5O12 crystal content and Eu3+ doping content on optical properties of glass‐ceramics were systematically studied by emission, excitation spectra, and decay curves. Notably, the spatial separation of these two different activators in the present glass‐ceramics, where Ce3+ ions located in YAG crystalline phase while the Eu3+ ones stayed in glass matrix, is advantageous to the realization of both intense yellow emission assigned to Ce3+: 5d→4f transition and red luminescence originating from Eu3+: 4f→4f transitions. As a result, the quantum yield of the glass‐ceramic reached as high as 93%, and the constructed WLEDs exhibited an optimal luminous efficacy of 122 lm/W, correlated color temperature of 6532 K and color rendering index of 75.  相似文献   

19.
Ceramic phosphor plates of cerium (Ce3+)-doped oxyfluoride were fabricated by the solid-state reaction method. These phosphors exhibit efficient emission, with the novel feature of color tuning by varying both the doping concentration and excitation wavelength. As the Ce3+ concentration increases, the excitation spectrum broadens by a factor of 1.6, and the excitation peak wavelength shifts from 390 to 435 nm, and there is a variation in excitation energy of ~ 10%. Luminescence spectrum of low Ce3+ concentration samples is tuned from blue to green with the change of excitation wavelength. The emission peak exhibits a shift of 58 nm into the red spectral region, varying the Ce3+ concentration from 0.05 to 0.1 mol% ; whereas this shift is only 6 nm when Ce3+ content changes from 0.25 to 1 mol%. Photoluminescence (PL) quantum yield has achieved 76%. The crystal structure was examined using X-ray diffraction to explain its possible influence on the redshift luminescence. A proof of concept of white LED was constructed using a 450 nm blue LED chip with an oxyfluoride phosphor plate, showing a luminous efficacy (LE) of 64 lm/W with a color rendering index of 74.  相似文献   

20.
《Ceramics International》2023,49(4):5884-5892
A series of novel negative temperature coefficient (NTC) thermistor materials based on La1-xCexAlO3 (0 ≤ x ≤ 0.2) ceramics were synthesized via the solid-state route. X-ray diffraction results confirmed the successful doping of Ce in the La1-xCexAlO3 crystal and the formation of a good solid solution. Scanning electron microscopy results indicated that Ce doping is beneficial for grain growth and reduces the porosity of the samples. With the increase in the Ce doping amount, the average grain size increased from 2.1793 to 10.7344 μm, and densities of the ceramics increased from 93.15% to 99.26%. The temperature vs resistance curve indicated that Ce doping reduces the resistivity of LaAlO3 materials, while reducing the B200/1400 value of the LaAlO3 ceramic. For a doping amount of 0.2, the B200/1400 value of the LaAlO3 ceramic decreased from 18175.1 to 4897.7K, and the resistivity at 1000 °C decreased from 68971.87 to 1105.15 Ω cm. In addition, the La1-xCexAlO3 (0 ≤ x ≤ 0.2) series materials exhibited good linear NTC characteristics. X-ray photoelectron spectroscopy results revealed that the resistivity of the LaAlO3 materials decreased after Ce doping owing to the transformation between the Ce4+ and Ce3+ valence states,and the concentration of Ce3+ increased with the increase in the Ce doping amount. Ce3+ increases the concentration of oxygen vacancies, decreasing the resistance. Impedance analysis findings suggested that the resistance of the La1-xCexAlO3 (0 < x ≤ 0.2) material mainly originates from the grain. These results indicate that Ce doping is an effective method to reduce the resistivity of LaAlO3. Consequently, La1-xCexAlO3 (0 ≤ x ≤ 0.2) is a promising material for NTC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号