首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
《Ceramics International》2022,48(15):21305-21316
Sintered carbides are promising materials for surfaces that are exposed to extreme wear. Owing to their high service load, ceramic-based thin films are coated on carbides using different techniques. In this study, non-toxic and cobalt-free powder metallurgy-sintered carbide samples were coated with TiN, TiAlN, CrAlN, and TiSiN ceramic-based thin film coatings by cathodic arc physical vapor deposition. The microstructure (phase formation, coating thickness, surface roughness, and topography), mechanical properties (hardness, modulus of elasticity, and plasticity indices), and tribological properties (nanoscratch and wear behavior) of the thin film coatings were investigated. No cracks or defects were detected in these layers. The ceramic-based ternary nitride thin film coatings exhibited better mechanical performance than the TiN coating. The TiN thin film coating had the highest average surface roughness, which deteriorated its tribological performance. The ternary nitride thin film coatings exhibited high toughness, while the TiN thin film coating exhibited brittle behavior under applied loads when subjected to nanoscratch tests. The wear resistance of the ternary nitride coatings increased by nearly 9–17 times as compared to that of the TiN coating and substrate. Among all the samples investigated, the substrate showed the highest coefficient of friction (COF), while the TiSiN coating exhibited the lowest COF. The TiSiN thin film coating showed improved mechanical and tribological properties as compared to other binary and ternary nitride thin film coatings.  相似文献   

2.
3.
The examination of the existing relationships between nanoindentation responses and tribological properties of the nanostructured CrN, Cr(CN), and (CrTi)N coatings was the matters to be considered in this research. A cathodic arc physical vapor deposition machine was therefore implemented to apply the chosen coatings on the DIN 1.2510 tool steel substrate. Moreover, an X-ray diffraction and a field emission scanning electron microscope were utilized in order to show the features regarding microstructure and morphology of these very coatings. The mechanical and tribological behavior of the coatings was expected to be assessed with the use of a nanoindentation and pin-on-disc wear tests. According to the obtained result, the wear resistance and hardness value of the (CrTi)N coating were proved to be much better than those of the CrN and Cr(CN). Linear equations were proposed between wear rate/hardness and friction coefficient/hardness to evaluate the correlation between mechanical and tribological properties. The presence of a quadratic equation between the friction coefficient and the plastic deformation index was also discovered.  相似文献   

4.
《Ceramics International》2023,49(19):31530-31538
High-entropy nitride and carbonitride ceramics have received wide attention for their excellent properties such as high hardness, high melting point, and high wear resistance, but the susceptibility of nitrides to decomposition at high sintering temperatures has rendered their densification challenging. In this work, four multicomponent nitrides and five multicomponent carbonitrides (containing five to seven cations) were prepared through ultrafast high-temperature sintering. While only (Cr1/7Zr1/7Nb1/7Hf1/7Ta1/7Ti1/7V1/7)N formed a single phase among the nitrides, all carbonitride systems formed a single-phase high-entropy solid solution with a relative density exceeding 92%. The polyanionic structure of carbonitrides is responsible for their high configurational entropy, which in turn results in their high solid solubility. Although carbonitrides showed higher hardness and modulus than nitrides with the same cations, their fracture toughness was lower. Among carbonitrides with different C/N ratios, the system with a C/N ratio of 5:5 showed the highest solid solubility and best overall mechanical properties.  相似文献   

5.
Demand for durable clear wood coatings is on the rise. Cellulose nanocrystals (CNC) constitute an organic nanomaterial widely studied in polymer composites for its reinforcing effect. In this study, CNC was used to enhance the performance of a UV curable high-solid content coating system intended for indoor environments. The CNC surface was modified by a cationic surfactant since the coating system was hydrophobic resin-based requiring hydrophobic nanomaterial reinforcement. Modified CNC was mixed with the coating system using a high-speed mixer and the ultrasonication technique. Mechanical, thermal and morphological properties and curing behavior of the newly developed UV-curing coatings were assessed. Inclusion of CNC in the coating increased the mechanical properties (hardness and reduced modulus) of the coating system to a large extent. Thermal stability of the coating system was also improved by CNC addition. The CNC did not affect the curing behavior of the coating, in contrast to most inorganic nanomaterials. The CNC dispersed well in the matrix at 1% loading. Results of this study show that CNC can be used successfully with high-solid content coating systems.  相似文献   

6.
Abstract

Organic-inorganic hybrid coatings were developed via a sol-gel method using hexagonal boron nitride (h-BN) as a ceramic filler material incorporated into a polymeric matrix. To investigate the effects of h-BN on the properties of polymer-based coatings, parameters such as hardness, coefficient of friction, and hydrophobicity were investigated. Colloidal silica (CS), methyltrimethoxysilane (MTMS), water, and acid catalyst containing coatings were prepared by varying the content of h-BN from 10% to 25%. All the coatings were prepared with the same experimental procedure and coated on 1050 aluminum alloy plates. The compensating contents of MTMS and colloidal silica with a fixed molar ratio of MTMS and CS were set to be 1:1.2, and a specific amount of the catalyst was utilized. Coatings were examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS). The most promising physical properties were determined to be the pencil hardness of 8B, adhesion strength of 5B, coefficient of friction of 0.332?N, and water contact angle of 114.75°. Therefore, it can be concluded that the h-BN improves the physical properties of polymeric coatings. In addition, this study demonstrates the effect of h-BN on the adherence of polymer matrix-based hybrid coatings.  相似文献   

7.
TiN/TaN multilayer coatings exhibit excellent mechanical properties when compared to single layer nitride coatings. In this study, TiN/TaN multilayer coatings were deposited on Mo-alloy and W-alloy substrates by CFUBMS. The structural and mechanical properties of coatings were analysed using XRD, EDS, SEM and a micro-hardness tester, respectively. To determine the adhesion and fatigue behaviour of the coatings were performed a scratch test in two modes that a standard mode with progressive loading and sliding-fatigue multimode operation with unidirectional sliding, respectively. A microscope was used to characterize adhesion and fatigue failures. The structural, mechanical, adhesion and fatigue properties of TiN/TaN multilayer coatings significantly changed depending on the substrate.  相似文献   

8.
Binary transition-metal nitrides (TMNs) are widely used as protective coating materials, and enhancing key performance characteristics are crucial to improving their robust and durable applications in harsh service environments. Compositional modulation via multiple elemental species offers an effective approach for optimizing physicochemical properties of TMNs, and establishing the composition–property relation is essential to the design of high-performance TMNs. In this work, we report on a comparative study of our synthesized NbN, NbMoN, and (NbMoTaW)N films and examined their microstructure, mechanical properties, and tribological and corrosion behaviors. The high-entropy (NbMoTaW)N film exhibits the highest hardness of 23.5 ± 1.35 GPa, which is ascribed to its high structural stability, increased elastic constant, and elastic modulus compared to the NbN and NbMoN films. The (NbMoTaW)N film also possesses the best wear resistance stemming from the highest H/E ratio and formation of self-lubricating MoO3 and WO3 species; moreover, this film shows the best corrosion resistance attributed to the sluggish diffusion of Cl due to lattice contraction and the structural stability caused by high-entropy effect. This work demonstrates simultaneously enhanced hardness and wear and corrosion resistance in a high-entropy TMN, opening a pathway for developing a new generation of advanced protective coating materials.  相似文献   

9.
This study aimed to investigate the effect of adding titanium (Ti) and silicon (Si) elements on the mechanical and electrochemical properties of the AlCrN-based coating. For this purpose, a cathodic arc physical vapor deposition machine was used. Scanning electron microscopy, X-ray diffraction, and nanoindentation tests were utilized for morphological, microstructural, and mechanical characterization of the coatings. The hardness value and plastic deformation index of CrAlN-based coating increase with the presence of Si element. The mechanical properties improvement is attributed to the reduction of crystallite size as well as to the tendency of the coating structure to become amorphous. The specimens were subjected to 3.5 wt% NaCl solution to electrochemical impedance corrosion and potentiodynamic polarization tests. The results showed that by increasing the coatings’ titanium content, the coatings’ corrosion resistance improved. Moreover, by adding 3% and 5% of Si elements to the coatings’ composition, the corrosion resistance of the AlCrTiSiN coatings was enhanced by 35% and 78%, respectively. Improving the corrosion resistance of the AlCrN-based coatings by adding the Si element is attributed to the change in the microstructure and reduction in the porosity of the coatings.  相似文献   

10.
《Ceramics International》2023,49(7):10525-10534
Thermal barrier coatings are an effective technology for improving the high-temperature performance of hot section components in gas turbine engine. Due to their excellent properties, high-entropy oxides are considered to be promising materials for thermal barrier coatings. Laser cladding is a coating preparation technology and the top coat prepared by laser cladding technology has an important application value for thermal barrier coatings. In this work, to improve the thermal cycling behavior of the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide coating, a bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide layer and the YSZ layer was designed and fabricated by laser cladding on the NiCoCrAlY alloy surface. The microstructure, phase and mechanical properties of the coating were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and micro-hardness and nanoindentation tests, respectively. The results show that a bi-layer La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7/YSZ coating was successfully prepared by the laser cladding method, and shows good bonding at the interface between the layers. The high-entropy oxide layer maintains a relatively stable defective fluorite structure and its microstructure exists in the stable cellular and dendrite crystalline state after laser cladding. The high-entropy oxide layer prepared by laser cladding showed an average elastic modulus of 167 GPa and an average hardness of 1022.8HV in nanoindentation tests. Thermal cycling of the coating was carried out at 1050 °C. Failure of the bi-layer coating occurred after 60 thermal cycles at 1050 °C. Thermal stresses between different layers are calculated during thermal cycling. Due to its excellent mechanical properties, the bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide and YSZ layers is expected to become an effective high-entropy oxide thermal barrier coating.  相似文献   

11.
12.
Polyester‐based polyurethanes with embedded nanosilica particles were prepared. The viscosity of polyester resins without and with nanosilica was determined by rheoviscometry. The morphology and mechanical and optical properties of the polyurethane coatings were studied intensively with a transmission electron microscope, a pendulum hardness tester, a scanning probe microscope, an Instron testing machine, an abrader and an ultraviolet–visible spectrophotometer. The viscosity of the polyester resins increased as the nanosilica content increased. Nanosilica could basically be dispersed into the polyester and its polyurethane on a nanoscale. The addition of a small amount of nanosilica increased the hardness, abrasion resistance, and tensile properties of the polymer films. However, these mechanical properties could be worsened at higher nanosilica contents. The ultraviolet–visible spectra showed that the absorbance and reflection of ultraviolet–visible light by the polyurethane films increased as the nano‐SiO2 content increased, especially at wavelengths of 290–400 nm. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 189–193, 2003  相似文献   

13.
In the present work boron acrylate monomer was synthesized by esterification reaction. UV-curable boron containing epoxy acrylate coatings were prepared and applied on plexiglass substrates to obtain thermally and mechanically stable coatings. The physical and mechanical properties of UV-cured coatings were investigated such as gel content, solvent resistance, hardness, flexibility and tensile tests. The thermal behavior of coatings was also evaluated. It was observed that the tensile properties and thermal stabilities of boron modified epoxy coatings mainly depend on the boron content.  相似文献   

14.
Ceramic matrix composites (CMCs) have gradually replaced superalloys for use in hot sections of aero-engines to meet the requirements for increasingly high engine temperatures. However, the abradable sealing coatings (ASCs) commonly applied to superalloys are not suitable for CMCs owing to factors such as the difference in the coefficient of thermal expansion, therefore it is necessary to develop a new system suitable for CMCs. Yb2Si2O7 exhibits good high-temperature phase stability and relatively low hardness and may be a suitable material for ASCs. In the present study, Yb2Si2O7-based composite coatings with different hexagonal boron nitride (hBN) contents (0, 5, 10, and 15 wt%) were deposited by air plasma spray (APS), and the microstructure, mechanical properties, and abradability of the coatings were characterized. The results showed that the system of Yb2Si2O7 combined with hBN exhibits lower hardness, lower friction coefficient, higher wear rate, and smaller IDR value than the pure Yb2Si2O7 coating and is appropriate for use in ASCs. However, excessive hBN caused severe wear of the coatings. The relevant wear mechanisms of the coatings were analysed, and this study may provide guidelines for the development of ASCs suitable for CMCs.  相似文献   

15.
《Ceramics International》2023,49(20):33255-33264
As the high-entropy design concept applied to the diboride ceramic system, high-entropy diboride ceramics with a wide range of composition control, is expected to become a new high-performance material for extreme high-temperature environments. Herein, the effects of four transition metal elements (Nb, Ti, Cr, W) on the phase stability and properties of (Hf, Zr, Ta)B2-based high-entropy diboride ceramics are systematically investigated via the first-principles calculations. All components were identified as thermodynamically, mechanically and dynamically stable from enthalpy of formation, elastic and phonon spectrum calculations. Among these, compared with the (Hf, Zr, Ta)B2 ceramics, the addition of Nb and Ti on the metal sublattice is beneficial to improve the mechanical properties of ceramics, including Young's modulus, hardness and fracture toughness, while the introduction of Cr and W weakens the strength of covalently and ionic bonds inside the material, reducing its mechanical properties. The predicted thermophysical properties show that the high-entropy diboride ceramics containing Nb and Ti have better high-temperature comprehensive performance, including higher Debye temperature, thermal conductivity and lower thermal expansion characteristics, which is conducive to the application in extreme high-temperature environments. This research will provide important guidance for the design and development of new high-performance high-entropy diboride ceramics.  相似文献   

16.
陈利  吴青阳  刘仁  李治全 《涂料工业》2018,48(12):28-33
传统巯基-丙烯酸酯光固化配方由于使用一级硫醇,贮存稳定性差,气味大,应用范围受限。文章以气味较低的二级硫醇-丙烯酸酯体系为对象,系统研究了二级硫醇含量对配方的稳定性、涂层的热性能、机械性能和基本涂膜性能的影响。结果表明:二级硫醇-丙烯酸酯体系具有较高的稳定性,在室温下放置25 d仍保持良好的流动性,而一级硫醇-丙烯酸酯体系放置1 d即发生凝胶。相比于纯丙烯酸酯体系,加入10%(巯基摩尔含量)的二级硫醇即可显著抑制体系的表面氧阻聚,同时双键转化率由47%上升到78%;随着二级硫醇含量的继续增加,涂层的玻璃化转变温度、储能模量和硬度逐渐降低,固化膜的柔韧性、耐冲击性和聚合网络的均一性逐渐增加。因此,通过改变巯基含量可有效调控固化膜的性能,扩大光固化技术的应用领域。  相似文献   

17.
We have employed thermodynamics and first-principles density-functional calculations to investigate the structural stability and mechanical properties of fifty-six quinary high-entropy metal carbides composed of carbon and Groups IVB, VB, and VIB refractory transition metals, Ti, Zr, Hf, V, Nb, Ta, Mo, and W, thirty-eight of which have not yet been synthesized. To determine the stability of the quinary high-entropy metal carbides, we have constructed a three-dimensional phase diagram in terms of the average melting point, mixing enthalpy, mixing entropy, and lattice size difference, from which we predict that it is feasible to synthesize 38 new high-entropy metal carbides. We have further found that all the 56 metal carbides would have unique mechanical properties of high hardness and high fracture toughness. In addition, our study suggests that the brittleness of high-entropy metal carbides steadily decreases with the increase of the valence electron concentration.  相似文献   

18.
The nanostructured and the conventional ZrO2 coating samples were thermal shocked at a series of temperatures. The elastic modulus and the hardness of two kinds of coatings were investigated by the nanoindentation tests. The results show that the corresponding mechanical properties of the conventional coatings increase monotonically with increasing temperature difference of the thermal shock. While the modulus and the hardness of the nanostructured coatings fluctuate slightly with increasing thermal shock temperature difference. Furthermore, the interface energy release model of the thermal shock strain energy was proposed for the nanostructured coatings. The theoretical prediction agrees with the experimental result.  相似文献   

19.
Scratch tests have been used to investigate the adhesion of niobium nitride (NbN) coatings that were deposited by pulsed dc reactive magnetron sputtering at target currents of 1.5, 2.5, and 3.5 A onto M2 tool steel and silicon wafer. The coating adhesion on each material substrate was investigated using a progressive load scratch tester (PLST) and a multi-pass scratch tester (MPST). Microhardness tests and scanning electron microscopy (SEM) were also used to examine the hardness and microstructure of the NbN coatings. These results have indicated that the structural, mechanical, and adhesion properties of the NbN coatings improve with increasing target currents. While performing PLST and MPST tests, the highest adhesion and lowest friction force were obtained for the coatings deposited at a target current of 3.5 A. In addition, the triboscobic behaviors that were observed from the MPST of the coatings indicated that the target currents affect the friction behavior of the coatings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号