首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Due to the limited temperature capability of current YSZ thermal barrier coating (TBC) material, considerable effort has been expended world-wide to research new candidates for TBC applications above 1200?°C. Our study suggested that Sc2O3 and Y2O3 co-doped ZrO2 (ScYSZ) had excellent t’ phase stability even after annealed at 1500?°C for 336?h. The thermal expansion coefficient of ScYSZ was comparable to the value of YSZ. The thermal conductivity of fully dense ScYSZ was in the range of 2.13–1.91?W?m?1?K?1 (25–1300?°C), approximately 25% lower than that of YSZ. Although the fracture toughness of dense ScYSZ was slightly lower than YSZ, an evident decline in elastic modulus was found. Additionally, thermal cycling lifetime of plasma sprayed ScYSZ coating (914 cycles) at 1300?°C was about 2.6 times longer than its YSZ counterpart. The superior comprehensive properties confirm that ScYSZ is a prospective candidate material for high-temperature TBC application.  相似文献   

2.
Yttria partially stabilized zirconia (~4.0?mol% Y2O3–ZrO2, 4YSZ) has been widely employed as thermal barrier coatings (TBCs) to protect the high–temperature components of gas–turbine engines. The phase stability problem existing in the conventional 4YSZ has limited it to application below 1200?°C. Here we report an excellent zirconia system co–doped with 16?mol% CeO2 and 4?mol% Gd2O3 (16Ce–4Gd) presenting nontransformable feature up to 1500?°C, in which no detrimental monoclinic (m) ZrO2 phase formed on partitioning. It also exhibits a high fracture toughness of ~46?J m?2 and shows high sintering resistance. Besides, the thermal conductivity and thermal expansion coefficient of 16Ce–4Gd are more competent for TBCs applications as compared to the 4YSZ. The combination of properties suggests that the 16Ce–4Gd system could be of potential use as a thermal barrier coating at 1500?°C.  相似文献   

3.
《Ceramics International》2016,42(6):7360-7365
Y2O3 stabilized ZrO2 (YSZ) has been considered as the material of choice for thermal barrier coatings (TBCs), but it becomes unstable at high temperatures and its thermal conductivity needs to be further reduced. In this study, 1 mol% RE2O3 (RE=La, Nd, Gd, Yb) and 1 mol% Yb2O3 co-doped YSZ (1RE1Yb–YSZ) were fabricated to obtain improved phase stability and reduced thermal conductivity. For 1RE1Yb–YSZ ceramics, the phase stability of metastable tetragonal (t′) phase increased with decreasing RE3+ size, mainly attributable to the reduced driving force for t′ phase partitioning. The thermal conductivity of 1RE1Yb–YSZ was lower than that of YSZ, with the value decreasing with the increase of the RE3+ size mainly due to the increased elastic field in the lattice, but 1La1Yb–YSZ exhibited undesirably high thermal conductivity. By considering the comprehensive properties, 1Gd1Yb–YSZ ceramic could be a good potential material for TBC applications.  相似文献   

4.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   

5.
《Ceramics International》2016,42(11):12922-12927
The single-ceramic-layer (SCL) Sm2Zr2O7 (SZO) and double-ceramic-layer (DCL) Sm2Zr2O7 (SZO)/8YSZ thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying on nickel-based superalloy substrates with NiCoCrAlY as the bond coat. The mechanical properties of the coatings were evaluated using bonding strength and thermal cycling lifetime tests. The microstructures and phase compositions of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that both coatings demonstrate a well compact state. The DCL SZO/8YSZ TBCs exhibits an average bonding strength approximately 1.5 times higher when compared to the SCL SZO TBCs. The thermal cycling lifetime of DCL SZO/8YSZ TBCs is 660 cycles, which is much longer than that of SCL 8YSZ TBCs (150 cycles). After 660 thermal cycling, only a little spot spallation appears on the surface of the DCL SZO/8YSZ coating. The excellent mechanical properties of the DCL LZ/8YSZ TBCs can be attributed to the underlying 8YSZ coating with the combinational structures, which contributes to improve the toughness and relieve the thermal mismatch between the ceramic layer and the metallic bond coat at high temperature.  相似文献   

6.
ZrO2 co-stabilized by CeO2 and TiO2 with stable, nontransformable tetragonal phase has attracted much attention as a potential material for thermal barrier coatings (TBCs) applied at temperatures >?1200?°C. In this study, ZrO2 co-stabilized by 15?mol% CeO2 and 5?mol% TiO2 (CTZ) and CTZ/YSZ (zirconia stabilized by 7.4?wt% Y2O3) double-ceramic-layer TBCs were respectively deposited by atmospheric plasma spraying. The microstructures, phase stability and thermo-physical properties of the CTZ coating were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric-differential scanning calorimeter (TG-DSC), laser pulses and dilatometry. Results showed that the CTZ coating with single tetragonal phase was more stable than the YSZ coating during isothermal heat-treatment at 1300?°C. The CTZ coating had a lower thermal conductivity than that of YSZ coating, decreasing from 0.89?W?m?1 K?1 to 0.76?W?m?1 K?1 with increasing temperature from room temperature to 1000?°C. The thermal expansion coefficients were in the range of 8.98?×?10?6 K?1 – 9.88 ×10?6 K?1. Samples were also thermally cycled at 1000?°C and 1100?°C. Failure of the TBCs was mainly a result of the thermal expansion mismatch between CTZ coating and superallloy substrate, the severe coating sintering and the reduction-oxidation of cerium oxide. The thermal durability of the TBCs at 1000?°C can be effectively enhanced by using a YSZ buffer layer, while the thermal cycling life of CTZ/YSZ double-ceramic-layer TBCs at 1100?°C was still unsatisfying. The thermal shock resistance of the CTZ coating should be improved; otherwise the promising properties of CTZ could not be transferred to a well-functioning coating.  相似文献   

7.
Thermal barrier coatings (TBCs) with low thermal conductivity have triggered tremendous attention due to their promising application in the gas turbine engines. Albeit recent studies have investigated double ceramic layers (DCL) with pyrochlore (A2B2O7) phase, it still remains a big challenge for controlling element content and investigating the relationship between the complex hierarchical architectures and their thermal performances. Here we describe a series of DCL La2O3-ZrO2-CeO2 (LZC)/Y2O3-stabilized ZrO2 (YSZ) coating under different current of electron beam by electron beam-physical vapor deposition (EB-PVD). The formation of hierarchical architecture with feathery microstructure and intra-columnar have been investigated in detail. The DCL coatings achieve a high thermal cycling life and relatively low thermal conductivity at controlling current of electron beam from 1.0 A to 1.3 A. This work may open new opportunities to rationally design other promising TBCs.  相似文献   

8.
LaPO4 powders were produced by a chemical co-precipitation and calcination method. The ceramic exhibited a monazite structure, kept phase stability at 1400?°C for 100?h, and had low thermal conductivity (~ 1.41?W/m?K, 1000?°C). LaPO4/Y2O3 partially stabilized ZrO2 (LaPO4/YSZ) double-ceramic-layer (DCL) thermal barrier coatings (TBCs) were fabricated by air plasma spray. The LaPO4 coating contained many nanozones. Thermal cycling tests indicated that the spallation of LaPO4/YSZ DCL TBCs initially occurred in the LaPO4 coating. The failure mode was similar to those of many newly developed TBCs, probably due to the low toughness of the ceramics. LaPO4/YSZ DCL TBCs were highly resistant to V2O5 corrosion. Exposed to V2O5 at 700–900?°C for 4?h, La(P,V)O4 formed as the corrosion product, which had little detrimental effect on the coating microstructure. At 1000?°C for 4?h, a minor amount of LaVO4 was generated.  相似文献   

9.
《Ceramics International》2022,48(17):24402-24410
Zr6Ta2O17 has higher fracture toughness, better phase stability, thermal insulation performance and calcium-magnesium-alumino-silicates (CMAS) attack resistance than yttria-stabilized zirconia (8 YSZ, 7–8 wt%) at temperatures above 1200 °C. However, the thermal expansion coefficients between Zr6Ta2O17 coating and bond coating do not match well. A double-ceramic-layer design is applied to alleviate the thermal stress mismatch. The Zr6Ta2O17/8 YSZ double-ceramic-layer thermal barrier coatings (TBCs) are prepared by atmospheric plasma spraying (APS). During the thermal shock test, Zr6Ta2O17/8 YSZ double-ceramic-layer TBCs exhibit a better thermal shock resistance than 8 YSZ and Zr6Ta2O17 single-layer TBCs. The thermal shock performance and failure mechanism of TBCs in the thermal shock test are investigated and discussed in detail.  相似文献   

10.
《Ceramics International》2020,46(17):26841-26853
To study the impact of rare earth oxide doping on the thermal failure of thermal barrier coatings, 0.5 mol%, 1.0 mol% and 1.5 mol% Nd2O3-doped YSZ coatings were prepared by explosive spraying. SEM, XRD, EDS and microhardness testing were used to analyse the effect of different rare earth oxide doping contents on the morphology, composition and mechanical properties of the coatings. With an increase in the Nd2O3 doping content, the porosity of the coatings was reduced. The decrease in the porosity increased the compactness of the coatings and improved the microhardness and fracture toughness. The bonding strength and thermal shock resistance of the coatings were the highest among the samples herein when the rare earth doping content was 1.0 mol%, and the values were 37.6 MPa and 200 times, respectively. The thermal shock failure mode of the coating was mainly due to the exfoliation of the inner layer of the ceramic layer. The luminous intensity of the coating increased with increasing rare earth oxide doping content, and the emission spectrum of the Nd2O3-modified YSZ coating after the thermal shock test produced a new emission peak at 594 nm, which decreased at 708 nm.  相似文献   

11.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

12.
《Ceramics International》2020,46(6):7019-7024
Here, noble metal Pd-doped Y3Al5O12 thermal barrier coatings (TBCs) were efficaciously prepared by means of cathode plasma electrolytic deposition (CPED). The formation mechanism of the Y3Al5O12 coatings and the difference in coating performance before and after doping with Pd were analyzed. The results indicated that the preparation of the Y3Al5O12 TBCs by using the CPED method could be divided into three stages, and the phase compositions of the coatings obtained with different deposition times were different. A single-phase Y3Al5O12 TBCs with a 115-μm thickness was obtained after a deposition time of 20 min. After Pd doping, the average surface roughness of the TBCs decreased from 27.72 to 13.84 μm, and the high-temperature oxidation resistance and thermal shock resistance at 1050 °C improved significantly.  相似文献   

13.
Double ceramic layer (DCL) TBCs consisting of a top 20 wt.% Al2O3-7YSZ layer and a bottom 7YSZ layer were desirably designed to achieve preferable performance while the thermal, mechanical and thermal cyclic properties were comprehensively investigated. Compared to the conventional 7YSZ TBCs, the thermal insulation properties of the DCL coating were significantly improved due to the increased oxygen vacancy concentration induced by Al2O3 addition while the thickness of the thermally grown oxides was diminished by the decreased oxygen diffusion rate. Furthermore, the improved fracture toughness of the DCL coating also prolonged the thermal cyclic life.  相似文献   

14.
In this paper, the reduction mechanism in thermal conductivity of a series of Sc2O3-Y2O3 co-stabilized tetragonal ZrO2 ceramics is systematically discussed. The thermal conductivity is approximately 20–28% lower than that of 6–8 wt.% yttria-stabilized zirconia (YSZ). A phonon scattering model, on account of the influence of oxygen vacancy variation and cation mass fluctuation, is optimized and utilized to depict the thermal conductivity of these materials. For the samples with the same amount of oxygen vacancy, Sc3+ is more effective in lowering thermal conductivity than Y3+ due to the large mass difference with Zr4+, as evidenced by the scattering model and phonon vibrational density of states. The experimental and calculation results suggest that this optimized model is proved to be more effective in predicting the thermal conductivity of binary or multiple rare earth oxides co-doped tetragonal ZrO2 and guiding the compositional design of thermal barrier materials.  相似文献   

15.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications.  相似文献   

16.
《Ceramics International》2019,45(10):12989-12993
Ba(Sr1/3Ta2/3)O3 (BST) ceramic was synthesized by a solid-state reaction method. The phase stability, microstructural evolution, and mechanical and thermal properties of the BST ceramic were investigated and characterized to evaluate the potential application of BST as a top coating material for thermal barrier coatings (TBCs). The results show that BST can maintain a stable hexagonal perovskite structure up to 1600 °C. Anisotropic growth of the grains above 1400 °C was observed. Its low elastic modulus and high fracture toughness suggest a high damage tolerance for the BST ceramic. In addition, the moderate coefficient of thermal expansion and superior heat insulation capability of the BST ceramic provide this ceramic the potential to serve as a top coating material of TBCs at higher temperature.  相似文献   

17.
《Ceramics International》2020,46(4):4174-4179
As a rare earth hexaaluminate, LaMgAl11O19 (LMA) has been one of the most promising materials used as thermal barrier coatings (TBCs). A large amount of amorphous phase, however, often exists in the plasma-sprayed LMA coating and significantly reduces the service lifetime of TBCs. In this study, La1-xGdxMgAl11O19 (x = 0, 0.2, 0.4, 0.6, and 0.8) ceramic powders are synthesised by solid-state reaction, and all of these powders are employed to prepare the corresponding coatings. The phase compositions and microstructures of samples are examined by X-ray diffraction and scanning electron microscopy, respectively. The linear thermal expansion behaviour and thermal cycling behaviour of the coatings are also analysed. The results show that the amorphous phase content is decreased and the thermal expansion behaviour is improved by doping the coatings with Gd2O3. The thermal cycling lifetime of the coating, however, basically remains unchanged.  相似文献   

18.
Thin multilayer coatings of ZrO2–Y2O3–Al2O3 were prepared using the sol-gel method and dip-coating technique in order to advance in the study of what influence the incorporation of Al2O3 has on films of Y2O3-doped ZrO2, investigating its role in the synthesis of the solutions and in the characteristics and properties of the coatings. After the characterization of the solutions used in the process, the microstructure of the films was studied and their mechanical behaviour and resistance to thermal shock were determined so as to optimize the characteristics and functionality of these coatings. With increased alumina content, 3YSZ-Al2O3 (20 mol%), the cubic phase of the zirconia disappeared completely at the sintering temperature used (700 °C), resulting in the tetragonal phase with Al in solution. There was also a decrease in the coatings' hardness and Young's modulus, and an increase in toughness and resistance to thermal shock. These results allow guidelines to be established for the design of multilayer structures that are, tougher, more resistant, and have improved surface properties.  相似文献   

19.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

20.
《Ceramics International》2020,46(13):20652-20663
Rare-earth doped zirconates are promising candidate materials for high-performance thermal barrier coatings (TBCs). The phase and microstructure stability is an important issue for the materials that must be clarified, which is related to the long-term stable work of TBCs at high temperatures. In this work, La2(Zr0.75Ce0.25)2O7 (LCZ) ceramic coatings prepared by atmospheric plasma spraying present a metastable fluorite phase, which can transform into stable pyrochlore under high-temperature annealing. The detailed structure evolution of the ceramic coatings is characterized systematically by SEM, XRD and Raman. The associated thermal properties of LCZ ceramics were also reported. Results show that LCZ ceramic has an ultralow thermal conductivity (0.65 W/m·K, 1200 °C), which is only 1/3 of that of yttria-stabilized zirconia (YSZ). The thermal expansion coefficients of LCZ ceramic increase from 9.68 × 10-6 K-1 to 10.7 × 10-6 K-1 (300 - 1500 °C), which are relatively larger than those of La2Zr2O7. Besides, Long-term sintering demonstrates that LCZ ceramic coating has preferable sintering resistance at 1500 °C, which is desirable for TBC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号