首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(4):6246-6253
In recent years, the broadband near-infrared (NIR) spectroscopy technology has been widely used in the field of nondestructive testing. However, these existing NIR phosphors showed relatively short emission wavelengths, narrower half-maximum full-width (FWHM), and narrower half-peak widths, importantly, few phosphors presented the emission from 950 nm to 1100 nm. In order to solve these problems, the Yb3+/Cr3+ ions codoped La(Mg0.5Sn0.5In0.5Sc0.5)0.5O3 (LMSIS) was synthesized by the solid-state method, and the emission spectrum of LMSIS:Cr3+ can be extended to the NIR long-wave region due to the energy transfer of Yb3+ and Cr3+, and the thermal stability of the phosphor can be improved due to the inherent temperature stability of the Yb3+ f-f transition. The NIR phosphor converted light emitting diodes (pc-LEDs) were fabricated by combining the LMSIS:0.003Cr3+, 0.0015Yb3+ with blue LED chip, which can be expected to be used in the field of broadband near-infrared non-destructive detection.  相似文献   

2.
《Ceramics International》2023,49(20):32860-32867
The broadband near-infrared (NIR) phosphor converted light emitting diode (NIR pc-LED) has garnered unprecedented attention due to its crucial role in NIR applications. However, there remains a scarcity of efficient broadband NIR luminescence materials capable of emitting NIR light with wavelengths greater than 800 nm. This study reports the synthesis, crystal structure and photoluminescence (PL) properties for double perovskite Sr2ScTaO6:Cr3+ phosphors which exhibit a broadband NIR emission in the 650–1250 nm range, peaking at∼815 nm with the full width at half maximum (FWHM) of 161 nm. The observed broadband emission arises from two distinct Cr3+ centers, namely Sc3+ and Ta5+ octahedral sites within the Sr2ScTaO6 structure, as demonstrated by luminescence and decay kinetic analysis. A significant enhancement of the thermal stability and a remarkable broadening of the FWHM (from 161 to 275 nm) are achieved by employing Yb3+ co-doping strategy. The efficient energy transfer from Cr3+ to Yb3+ was confirmed through emission and excitation spectra, as well as luminescence decay measurements. Finally, Sr2ScTaO6:Cr3+-Yb3+ phosphor was integrated with a 470 nm blue LED chip to fabricate a NIR pc-LED device, and its potential application in night vision was evaluated.  相似文献   

3.
《Ceramics International》2023,49(1):309-322
Efficient ultra-broadband near-infrared (NIR) phosphors with long-wavelength (λmax > 850 nm) and wide full width at half-maximum (FWHM, >200 nm) have sparked tremendous interest, demonstrating their immense potential in NIR spectroscopy technology. Nevertheless, the development of NIR spectroscopy technology suffers from the restricted capability to efficiently emit the ultra-broadband NIR light. Herein, the synergetic enhancement strategy of heterogeneous substitution and compositional modulation was applied to create a novel Cr3+ doped long-wavelength ultra-broadband MgO: Cr3+, Ga3+ phosphor, which exhibited a long-wavelength ultra-broadband NIR emission (λmax = 850 nm) covering the range of 650–1300 nm on the electromagnetic spectrum with the FWHM of more than 200 nm under the excitation of 468 nm light. Furthermore, the tunable NIR emission from 818 nm to 862 nm with an optimized quantum efficiency of 30% was accomplished by the Ga3+ ions substitution and Cr3+ ions modulation. The phosphor exhibited remarkable thermal stability up to 100 °C, remaining 83% of the integrated emission intensity at room temperature. A prototype of the NIR phosphor-converted LED (pc-LED) demonstrated that the novel MgO: Cr3+, Ga3+ phosphor possessed a relatively strong NIR output power (15.05 mW at 100 mA driven current) with a photoelectric conversion efficiency of 5.53%, which is impressive compared with other Cr3+-doped long-wavelength ultra-broadband phosphors. This work not only proposes a novel long-wavelength ultra-broadband NIR phosphors with industrialization and great application prospect in night vision but highlights a synergetic enhancement strategy to effectively boost the performance of long-wavelength ultra-broadband NIR pc-LED light sources.  相似文献   

4.
Broadband near-infrared (NIR) phosphors converted light-emitting diodes (pc-LEDs) have attracted tremendous attention for their great potential in NIR spectroscopy applications. Herein, we report on the photoluminescence (PL) properties of Cr3+-doped Sc(PO3)3, which exhibits a broadband NIR emission centered at 900 nm with a full width at half-maximum (FWHM) of 161 nm upon excitation at 480 nm. In terms of the examination of spectroscopic parameters, we find that Cr3+ ions occupy a weak crystal field site (Dq/B = 1.94) in the Sc(PO3)3 host with a stronger electron–phonon coupling (Huang-Rhys factor, S = 5.5), which results in a serious thermal quenching and a low internal quantum efficiency (IQE). Thermal stability and IQE of phosphors can be substantially enhanced by the introduction of Yb3+ ions. In the light of the analysis of excited-state dynamics, we demonstrate that the enhancement mechanism is ascribed to the efficient Cr3+→Yb3+ energy transfer from the thermal sensitive Cr3+ centers to the thermal stable Yb3+ emitters. An NIR pc-LED device has been finally fabricated by the combination of a blue-emitting chip and a Cr3+/Yb3+ codoped Sc(PO3)3 phosphor whose potential application for broadband NIR pc-LEDs is also discussed.  相似文献   

5.
Broadband near-infrared phosphors are essential to realize nondestructive analysis in food industry and biomedical areas. Efficient long-wavelength (>830 nm) phosphors are strongly desired for practical applications. Herein, we demonstrate an efficient broadband NIR phosphor LiInGe2O6:Cr3+, which exhibits a broad NIR emission peaking at ~880 nm with a full width at half maximum of 172 nm upon 460 nm excitation. The internal/external quantum efficiencies of LiInGe2O6:Cr3+ are measured to be 81.2% and 39.8%, respectively. The absorption of the phosphor matches well with commercial blue LEDs. Using the fabricated phosphor converted LED illuminating human palm, distribution of blood vessels can be clearly recognized under a NIR camera. These results indicate that LiInGe2O6:Cr3+ is a promising candidate to be used in future non-destructive biological applications.  相似文献   

6.
《Ceramics International》2023,49(3):4881-4888
Portable near-infrared (NIR) lighting source stimulates great efforts to exploit NIR phosphor-converted LEDs (pc-LEDs) that push the rapid development of broadband NIR-emitting phosphors. Although Cr3+-activated NIR phosphors designed by multisites occupation strategy show significant potential in emission bandwidth, poor spectral stability caused by different thermal quenching behaviors is a brake on practical application due to different local structure around Cr centers. One-site-based NIR phosphors seem to be an effective method to solve aforementioned problem. Herein, we report a type of new ultra-broadband one-site-based NIR-emitting phosphors NaSc1-xP2O7:xCr3+ (NSP:xCr3+) with emission at 910 nm and full width at half maximum (FWHM) of up to ~200 nm. Their FWHM value exceeds all one-site-based Cr3+-activated phosphors and some multiple-sites ones. Structural analysis and low-temperature spectra demonstrate that such impressive broadband NIR emission originates from Cr3+ occupying at single octahedral Sc site. At 425 K, integrated emission intensity of NSP:0.04Cr3+ phosphor maintains 53.8% of room temperature. A NIR pc-LED prototype is fabricated by using NSP:0.04Cr3+ phosphor with a blue LED chip, and its multipurpose applications in non-destructive detection, night vision and analysis of foodstuff are demonstrated. These findings indicate that broadband NSP:0.04Cr3+ NIR phosphor enabled by one-site occupation strategy has potential prospect for multipurpose NIR pc-LEDs applications.  相似文献   

7.
Phosphor-convert (pc) near-infrared (NIR) LED is the next-generation smart NIR light sources. Thus, NIR phosphors are quickly developed. The K3Al1−xF6:xCr3+ (KAF:Cr3+) NIR phosphor shows broadband emission from 650 to 900 nm under 430 nm and can be used to fabricate NIR LEDs. In this work, KAF:Cr3+ phosphors were prepared by a hydrothermal method for the first time. Morphologies and NIR properties are tuned by controlling the hydrothermal processes. Different from the cubic KAF:Cr3+ synthesized by a coprecipitation method, KAF:Cr3+ synthesized by the hydrothermal method shows the tetragonal phase. The optimized KAF:3%Cr3+ shows an internal quantum efficiency of about 31.4%. A NIR pc-LED device was fabricated by integrating the KAF:3%Cr3+ phosphor with a blue LED chip (~450 nm). The output power of NIR light is about 5.5 mW driven at 150 mA.  相似文献   

8.
《Ceramics International》2023,49(7):10692-10701
Phosphors that can emit broadband light from visible to near infrared (NIR) may have applications in the fields like white-light illumination and NIR vessel visualization, the investigation on single phase extra-broadband visible-NIR emitting phosphor is of great significance. Herein, an extra-broadband phosphor with tunable visible-NIR emission from 500 nm to longer than 900 nm (bandwidth >400 nm) was successfully prepared, which originates from the emission of Ce3+ (peaking at 573 nm), Cr3+ (peaking at 750 nm) and energy transfer from Ce3+ to Cr3+ in Y3MgAl3SiO12 garnet. The influences of Ce3+/Cr3+ doping concentration and working temperature were discussed systematically by luminescence spectra and decay curves. A visible-NIR full-spectrum phosphor-converted light emitting diode (pc-LED) fabricated with a 460 nm LED chip and Y3MgAl3SiO12:0.03Ce3+, 0.01Cr3+ can generate bright white light and broadband NIR light simultaneously. The co-doping of Ce3+ can perfectly compensate for the missing spectrum of Cr3+ in the visible region, thanks to the extra-broadband emission of Ce3+ in visible region and Cr3+ in NIR region, multifunctional advanced applications may be realized for the prepared phosphors.  相似文献   

9.
《Ceramics International》2019,45(11):14249-14255
Novel single-component phosphors Ca3Sc2Si3O12:Cr3+/Ln3+ (CSS:Cr3+/Ln3+, Ln = Nd, Yb, Ce) with broadband near-infrared (NIR) emissions are synthesized. Their phase structure, photoluminescence properties and energy transfer between Cr3+ and Ln3+ ions are investigated. In the CSS host, Cr3+ ions occupy Sc3+ sites with low-field octahedral coordination, and thus show a broadband emission in 700–900 nm under the blue light excitation. Nd3+, Yb3+ and Ce3+ ions substitute Ca2+ sites in CSS, where Nd3+ and Yb3+ ions emit the NIR light in 900–1100 nm and their excitation efficiencies at ∼450 nm are greatly enhanced by utilizing the energy transfer from Cr3+ to Nd3+/Yb3+ ions. Ce3+ ions can further enhance the absorption of CSS:Cr3+/Ln3+ phosphors to the blue light, and at the same time contribute to the visible emission in 480–650 nm. Furthermore, CSS:Cr3+/Ln3+ phosphors show good thermal stability, and approximately 79% of the initial emission intensity is sustained at 150 °C. A phosphor-converted LED (pc-LED) prototype is fabricated by integrating the as-prepared phosphor CSS:Cr3+/Ln3+ and the commercial phosphor CaAlSiN3:Eu2+ with the blue LED chip, showing a super broadband emission ranging from 450 to 1100 nm. This finding shows the potential application of CSS:Cr3+/Ln3+ phosphors in broadband NIR pc-LEDs or super broadband LED sources with visible to NIR light output.  相似文献   

10.
《Ceramics International》2023,49(13):21688-21694
The NIR phosphor-converted light-emitting diode (NIR pc-LED) is a new near-infrared light source that has been widely studied. Among various NIR phosphors, Cr3+ doped gadolinium aluminum gallium garnet (GAGG:Cr3+) ceramic phosphor has shown great potential due to its ultra-high efficiency and thermal stability. Despite its capabilities, its detection range may be limited due to a relatively narrow emission bandwidth. To make the GAGG:Cr3+ ceramic phosphors achieve both high efficiency and broadband emission, a series of Gd3Al2-x-yScxGa3O12:yCr3+ (GASGG:Cr3+) ceramic phosphors were prepared. Thanks to the decrease of crystal field strength with the doping of Sc3+, the full width at half maximum (FWHM) of GASGG:Cr3+ ceramic phosphors were extended from 84 nm to 117 nm, and the emission peak exhibited a red-shift of 46 nm. Meanwhile, it still retained extremely high external quantum efficiency (EQE = 47%) and excellent thermal stability (90.7%@150 °C). Then, a NIR pc-LED prototype device was fabricated by combining GASGG:Cr3+ ceramic phosphor with a blue LED chip. The NIR light output power and the photoelectric conversion efficiency of this device achieved 646 mW and 19.2%, respectively. Finally, the application effect in night vision and venography of this prototype device was demonstrated.  相似文献   

11.
《Ceramics International》2021,47(18):25343-25349
A NIR-emitting Cr3+-activated phosphors (NaInGe2O6: Cr3+) covering whole NIR-I region (700–1200 nm) were successfully designed and prepared via solid-state reaction. XRD and Rietveld refinement verified that the octahedral In3+ site is the preferred site of Cr3+ substitution in NaInGe2O6 structure. The synthesized NaInGe2O6: Cr3+ phosphors exhibit two strong absorption bands at 480 and 700 nm, and show a mountain-like single-band emission at 900 nm with FWHM = 175 nm. The crystal field parameters are calculated using steady-state spectral data, in which a low Dq/B value of 1.89 is obtained and results in this broadband NIR emission. NaInGe2O6: Cr3+ exhibits good emission thermal stability, i.e. 55 % of room temperature intensity at 373 K. Besides, an efficient NIR pc-LED is fabricated and shows NIR output of 25.2 mW@120 mA. This broadband NaInGe2O6: Cr3+ NIR phosphor could be merged into pc-LED package for hand-held spectrometers, security cameras and vivo biomarkers.  相似文献   

12.
Cr3+-doped phosphors have recently gained attention for their application in broadband near-infrared phosphor-converted light-emitting diodes (pc-LEDs), but generally exhibit low efficiency. In this work, K2Ga2Sn6O16:Cr3+ (KGSO:Cr) phosphor was designed and synthesized. The experimental results show that the Cr3+-doped phosphor exhibited broadband emissivity in the range 650-1300 nm, with a full width at half maximum (FWHM) of approximately 220-230 nm excited by a wavelength of 450 nm. With the co-doping of Gd3+ ions, the internal quantum efficiency (IQE) of the KGSO:Cr phosphor increased from 34% to 48%. The Gd3+ ions acted neither as activators nor sensitizers, but to justify the crystal field environment for efficient Cr3+ ions broad emission. The Huang-Rhys factor decreased as the co-doping of Gd3+ ions increased, demonstrating that the nonradiative transitions were suppressed. An efficient strategy for enhancing the luminescence properties of Cr3+ ions is proposed for the first time. The Gd3+–co-doped KGSO:Cr phosphor is a promising candidate for broadband NIR pc-LEDs.  相似文献   

13.
Garnet‐type compound Ca3Ga2Ge3O12 and Cr3+‐doped or Cr3+/Bi3+ codped Ca3Ga2Ge3O12 phosphors were prepared by a solid‐state reaction. The crystal structure of Ca3Ga2Ge3O12 host was studied by X‐ray diffraction (XRD) analysis and further determined by the Rietveld refinement. Near‐infrared (NIR) photoluminescence (PL) and long‐lasting phosphorescence (LLP) emission can be observed from the Cr3+‐doped Ca3Ga2Ge3O12 sample, and the enhanced NIR PL emission intensity and LLP decay time can be realized in Cr3+/Bi3+ codped samples. The optimum concentration of Cr3+ in Ca3Ga2Ge3O12 phosphor was about 6 mol%, and optimum Bi3+ concentration induced the energy‐transfer (ET) process between Bi3+ and Cr3+ ions was about 30 mol%. Under different excitation wavelength from 280 to 453 nm, all the samples exhibit a broadband emission peaking at 739 nm and the intensity of NIR emission increases owing to the ET behavior from Bi3+ to Cr3+ ions. The critical ET distance has been calculated by the concentration‐quenching method. The thermally stable luminescence properties were also studied and the introduction of Bi3+ can also improve the thermal stability of the NIR emission.  相似文献   

14.
Near-infrared phosphor-converted light-emitting diodes (NIR-pc-LEDs) are superior to traditional NIR-LEDs in spectral modulation, volume, and cost, and their optoelectronic properties are dominantly controlled by the NIR phosphors, which thus boosts the search for high efficiency and broadband NIR phosphors. In this work, we attempt to realize ultra-broadband NIR phosphors by doping Cr3+ in self-emitting SrHfO3 with a weak crystal field. Dual emission bands centered at 770 (host) and 1000 nm (Cr3+) are observed, leading to a wide spectral range of 700–1400 nm. The Cr3+ ions enter the HfO6 octahedron and thus produce an NIR emission with a full width at half maximum of 190 nm and an internal quantum efficiency of 24% under 460 nm excitation. A prototype NIR-pc-LED surface light is demonstrated for machine vision by using NIR-pc-LEDs that combine the blue LED with SrHfO3:Cr. The work paves an avenue for designing super-broadband NIR phosphors by doping Cr3+ or other ions into hosts with self-trapped exciton emission (e.g., halide perovskites).  相似文献   

15.
Broadband near-infrared (NIR) phosphors have received increasing attention for fabricating phosphor-converted light-emitting diodes (pc-LEDs) as NIR light source. Most of the reported broadband NIR phosphors originate from Cr3+ in weak crystal field environments. Herein, we report a luminescent material, MgAlSiN3:Mn2+ with CaAlSiN3-type structure, demonstrating that broadband deep-red-to-NIR emission can be achieved via doping Mn2+ into crystallographic sites with strong crystal field in inorganic solids. This phosphor is synthesized via easy-handle solid-state reaction, and the optimized sample, (Mg0.93Mn0.07) AlSiN3 shows an emission band with peak at ~754 nm, FWHM of 150 nm, and internal quantum efficiency of 70.1%. The photoluminescence intensity can further be enhanced by co-doping Eu2+ as sensitizer. This work provides a new strategy for discovering new broadband NIR phosphors using Mn2+ in strong crystal field as luminescence center.  相似文献   

16.
《Ceramics International》2016,42(8):9396-9401
Ce3+ and Yb3+ co-doped YBO3 phosphors were facilely fabricated by a hydrothermal method. The investigations reveal that hexagonal YBO3: Ce3+, Yb3+ nanoparticles aggregate to form cyclic structure after annealing at 900 °C. An efficient near-infrared (NIR) quantum cutting phenomenon involving the emission of two NIR photons (971 nm) for each ultraviolet (UV) photon (360 nm) absorbed is observed based on the cooperative energy transfer (CET) from Ce3+ to Yb3+ in YBO3 with a CET efficiency of 41.9%. Moreover, YBO3: Ce3+, Yb3+/SiO2 films with anti-reflection and NIR quantum cutting abilities were prepared by dip-coating method. The as prepared composite films can convert UV photons into NIR photons between 950 nm and 1050 nm, which well matched with the spectral response of the silicon-based solar cell. The experimental results indicate that the photoelectric conversion efficiency of silicon solar cell can be effectively improved by assembling the YBO3: Ce3+, Yb3+/SiO2 bi-functional film, and the corresponding conversion efficiency is about 0.521% higher than the pure glass and 0.252% higher than the pure SiO2 anti-reflection (AR) film. In a word, this work provides a simple strategy to develop optical films with AR and NIR quantum cutting abilities for solar energy conversion.  相似文献   

17.
《Ceramics International》2017,43(12):8879-8885
The present paper focuses on near infrared (NIR) down-conversion photoluminescence (PL) properties by studying the energy transfer mechanism between Er3+ and Yb3+ in CaMoO4:Er3+, Yb3+ phosphors. We have successfully synthesized a series of Er3+ doped and Yb3+ codoped CaMoO4 phosphors by hydrothermal method. The down-conversion of Er3+-Yb3+ combination with CaMoO4 phosphor is designed to overcome the energy losses due to spectral mismatch when a high energy photon is incident on the Si-solar cell. The XRD, FESEM, EDX, PL, UV–Vis, Lifetime measurements were carried out to characterize the prepared down-converting phosphors. The crystallinity and surface morphology were studied by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The down-conversion PL spectra have been studied using 380 nm excitation wavelength. The Er3+ doped phosphors exhibit hypersensitive emission at 555 nm in the visible region due to 4S3/24I15/2 transition. The addition of Yb3+ into Er3+ doped CaMoO4 attribute an emission at 980 nm due to 2F5/22F7/2 transition. The decrease in emission intensity in visible region and increase in NIR region reveals the energy transfer from Er3+ to Yb3+ through cross relaxation. The UV–Vis–NIR spectra shows the strong absorption peak around 1000 nm due to Yb3+ ion. The lifetime measurement also reveals the energy transfer from Er3+ to Yb3+ ions. The maximum value of energy transfer efficiency (ETE) and corresponding theoretical internal quantum efficiency are estimated as 74% and 174% respectively.  相似文献   

18.
In this work, we report a novel phosphor LSPO:Mn2+ that exhibits red emission at about 616 nm and pleasant broad near-infrared (NIR) emission at about 800 nm with a full width at half maximum (fwhm) of 112 nm. The structure and spectra show that the doped manganese ions occupy two kinds of Sc sites forming Mn1 and Mn2 emission centers, which are responsible for red and NIR emission, respectively. The XPS and low-temperature fluorescence spectra reveal that both red and NIR emissions come from the Mn2+ ions. Besides, NIR luminescence is improved by doping Yb3+ in LSPO:Mn2+, leading to the broadened NIR emission range (700-1100 nm) and enhanced luminescent thermal stability. Our results suggest that the prepared LSPO:Mn2+ and LSPO:Mn2+,Yb3+ phosphors offer the potential applications as red and NIR components in phosphor-converted white-light-emitting diodes (pc-WLED) and broadband NIR pc-LED. Meanwhile, this work provides a new way to design novel broadband NIR phosphors.  相似文献   

19.
《Ceramics International》2023,49(19):31649-31657
Nowadays, near-infrared phosphor-converted light emitting diodes (NIR pc-LEDs) attract wide attention since the NIR spectroscopy technique can exert itself in many fields. However, most of the developed NIR phosphors are still not commercially viable, because of low internal/external quantum yield and poor thermal resistance. Therefore, it is urgent to develop an efficient irradiance and thermal stable NIR phosphor. In this work, the new GdAl3-x-yGay(BO3)4: xCr3+ phosphors, compared with the original phosphor (x = 0.03, y = 0), when x = 0.03, y = 0.2, the luminescence intensity increased by 2.1 times, and the thermal resistance jumped from 92.0% to 96.7%. At the same time, with the increase of Ga3+, the spectra were gradually red shifted and FWHM widened, attributing to the nephelauxetic effect and the electron-phonon coupling effect enhanced, respectively. Particularly, under 420 nm excitation, the internal and external quantum yield of GdAl2.77Ga0.2(BO3)4: 0.03Cr3+ were 93.4% and 35.5%, respectively, which is higher than the previous research. The electric-optical conversion efficiency of the pc-LED was 10.76%. Finally, the phosphor application experiments revealed that the prepared phosphor has a very high commercial application potential.  相似文献   

20.
Ho3+/Yb3+ co-doped NaGdTiO4 phosphors were synthesized by a solid-state reaction method. The upconversion (UC) luminescence characteristics excited by 980 nm laser diode were systematically investigated. Bright green UC emission centered at 551 nm accompanied with weak red and near infrared (NIR) UC emissions centered at 652 and 761 nm were observed. The dependence of UC emission intensity on excitation power density showed that all of green, red and NIR UC emissions are involved in two-photon process. The UC emission mechanisms were discussed in detail. Concentration dependence studies indicated that Ho3+ and Yb3+ concentrations had significant influences on UC luminescence intensity and the intensity ratio of the red UC emission to that of the green one. Rate equations were established based on the possible UC mechanisms and a theoretical formula was proposed to describe the concentration dependent UC emission. The UC luminescence properties of the presented material was evaluated by comparing with commercial NaYF4:Er3+, Yb3+ phosphor, and our sample showed a high luminescence efficiency and good color performance, implying potential applications in a variety of fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号