首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Novel glass–free low temperature firing microwave dielectric ceramics Li2CeO3 with high Q prepared through a conventional solid‐state reaction method had been investigated. All the specimens in this paper have sintering temperature lower than 750°C. XRD studies revealed single cubic phase. The microwave dielectric properties were correlated with the sintering conditions. At 720°C/4 h, Li2CeO3 ceramics possessed the excellent microwave dielectric properties of εr = 15.8, Q × f = 143 700 (GHz), and τf  = ?123 ppm/°C. Li2CeO3 ceramics could be excellent candidates for glass‐free low‐temperature co‐fired ceramics substrates.  相似文献   

2.
Novel microwave dielectric ceramics in the Li2MnO3 system with high Q prepared through a conventional solid‐state route had been investigated. All the specimens exhibited single phase ceramics sintered in the temperature range 1140°C–1230°C. The microwave dielectric properties of Li2MnO3 ceramics were strongly correlated with sintering temperature and density. The best microwave dielectric properties of εr = 13.6, Q × f = 97 000 (GHz), and τf = ?5.2 ppm/°C could be obtained as sintered at 1200°C for 4 h. BaCu(B2O5) (BCB) could effectively lower the sintering temperature from 1200°C to 930°C and slightly induced degradation of the microwave dielectric properties. The Li2MnO3 ceramics doped with 2 wt% BaCu(B2O5) had excellent dielectric properties of εr = 11.9, Q × f = 80 600 (GHz), and τf = 0 ppm/°C. With low sintering temperature and good dielectric properties, the BCB added Li2MnO3 ceramics are suitable candidates for LTCC applications in wireless communication system.  相似文献   

3.
A low‐permittivity dielectric ceramic Li2GeO3 was prepared by the solid‐state reaction route. Single‐phase Li2GeO3 crystallized in an orthorhombic structure. Dense ceramics with high relative density and homogeneous microstructure were obtained as sintered at 1000‐1100°C. The optimum microwave dielectric properties were achieved in the sample sintered at 1080°C with a high relative density ~ 96%, a relative permittivity εr ~ 6.36, a quality factor Q × f ~ 29 000 GHz (at 14.5 GHz), and a temperature coefficient of resonance frequency τf ~ ?72 ppm/°C. The sintering temperature of Li2GeO3 was successfully lowered via the appropriate addition of B2O3. Only 2 wt.% B2O3 addition contributed to a 21.2% decrease in sintering temperature to 850°C without deteriorating the dielectric properties. The temperature dependence of the resonance frequency was successfully suppressed by the addition of TiO2 to form Li2TiO3 with a positive τf value. These results demonstrate potential applications of Li2GeO3 in low‐temperature cofiring ceramics technology.  相似文献   

4.
The crystal structure and microwave dielectric properties of a novel low‐firing compound Li2Mg2W2O9 were investigated in this study. The phase purity and crystal structure were investigated using X‐ray diffraction analyses and Rietveld refinement. The best microwave dielectric properties of the ceramic with a low permittivity (εr) ~11.5, a quality factor (× f) ~31 900 GHz (at 10.76 GHz) and a temperature coefficient of the resonant frequency (τf) ~ ?66.0 ppm/°C were obtained at the optimum sintering temperature (920°C). CaTiO3 was added into the Li2Mg2W2O9 ceramic to obtain a near zero τf, and 0.93Li2Mg2W2O9–0.07CaTiO3 ceramic exhibited improved microwave dielectric properties with a near‐zero τf ~ ?1.3 ppm/°C, a εr ~21.6, a high Qu × f value ~20 657 GHz. The low sintering temperature and favorable microwave dielectric properties make it a promising candidate for LTCC applications.  相似文献   

5.
New dielectric ceramics are prepared by the conventional solid‐state ceramic route. Effects of LZB glass on sintering, phase purity, microstructure, and dielectric properties of Li2ZnTi3O8 ceramics have been investigated. Adding LZB lowers sintering temperature from 1050°C to 875°C, and does not induce much degradation of dielectric properties. The 1.0 wt% LZB glass‐added ceramic has better properties of εr = 23.9, Q × = 31,608 GHz, τf = ?14.3 ppm/°C. Additions of TiO2 markedly improve microwave properties. Typically, the Li2ZnTi3O8 + 1 wt%LZB + 3.5 wt%TiO2 sintered at 900°C shows εr = 26.1, Q × = 45,168 GHz, τf = ?4.1 ppm/°C. Compatibility with Ag electrode indicates that this material may be applied to LTCC devices.  相似文献   

6.
The effects of Li2O–ZnO–B2O3 glass additive on the sintering behavior, phase formation, microstructure, and microwave dielectric properties of ZnTiNb2O8 ceramics have been investigated. The sintering temperature of ZnTiNb2O8 ceramics can be effectively reduced from 1200°C to 875°C by adding a small amount of Li2O–ZnO–B2O3 glass, while no obvious degradation of the microwave dielectric properties was induced. Typically, the 2.0 wt% Li2O–ZnO–B2O3 glass-added ceramic sintered at 875°C has better microwave dielectric properties of ɛr=31.8, Q×f=25,013 GHz, and τf=−62 ppm/°C. In addition, the ceramics can be co-fired well with an Ag electrode.  相似文献   

7.
Preparation and microwave dielectric properties of B2O3‐doped CaLa4Ti4O15 ceramics have been investigated. X‐ray diffraction data show that CaLa4Ti4O15 ceramic has a trigonal structure coupled with a second phase of CaLa4Ti5O17. The CaLa4Ti4O15 ceramic with addition of 0.5 wt% B2O3, sintered at 1220°C for 4 h, exhibits microwave dielectric properties with a dielectric constant of 45.8, Q × f value of 24,000 GHz, and temperature coefficient of resonant frequency (τf) of ?19 ppm/°C. B2O3‐doped CaLa4Ti4O15 ceramics, which have better sintering behavior (decrease in sintering temperature ~ 330°C) and dielectric properties than pure CaLa4Ti4O15 ceramics, are candidates for applications in microwave devices.  相似文献   

8.
A new Li‐containing microwave ceramic Ba5Li2W3O15 with hexagonal perovskite structure was prepared through a solid‐state ceramic route. Small amount of scheelite BaWO4 appeared as a second phase during sintering. The Ba5Li2W3O15 could be well densified at 1120°C and exhibits good microwave dielectric properties with permittivity (εr) of 25.4, high Q × f value about 39 000 GHz, and low temperature coefficient of resonate frequency (τf) of 10 ppm/°C. The addition of BaCu(B2O5) can effectively lower the sintering temperature from 1120°C to 900°C and does not induce degradation of the microwave dielectric properties. These results indicate that the Ba5Li2W3O15 ceramic might be a promising candidate in microwave dielectric resonators.  相似文献   

9.
The liquid‐phase sintering behavior and microstructural evolution of x wt% LiF aided Li2Mg3SnO6 ceramics (x = 1‐7) were investigated for the purpose to prepare dense phase‐pure ceramic samples. The grain and pore morphology, density variation, and phase structures were especially correlated with the subsequent microwave dielectric properties. The experimental results demonstrate a typical liquid‐phase sintering in LiF–Li2Mg3SnO6 ceramics, in which LiF proves to be an effective sintering aid for the Li2Mg3SnO6 ceramic and obviously reduces its optimum sintering temperature from ~1200°C to ~850°C. The actual sample density and microstructure (grain and pores) strongly depended on both the amount of LiF additive and the sintering temperature. Higher sintering temperature tended to cause the formation of closed pores in Li2Mg3SnO6x wt% LiF ceramics owing to the increase in the migration ability of grain boundary. An obvious transition of fracture modes from transgranular to intergranular ones was observed approximately at x = 4. A single‐phase dense Li2Mg3SnO6 ceramic could be obtained in the temperature range of 875°C‐1100°C, beyond which the secondary phase Li4MgSn2O7 (<850°C) and Mg2SnO4 (>1100°C) appeared. Excellent microwave dielectric properties of Q × f = 230 000‐330 000 GHz, εr = ~10.5 and τf = ~?40 ppm/°C were obtained for Li2Mg3SnO6 ceramics with x = 2‐5 as sintered at ~1150°C. For LTCC applications, a desirable Q × f value of ~133 000 GHz could be achieved in samples with x = 3‐4 as sintered at 875°C.  相似文献   

10.
0.9(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–0.1(Ca0.8Sr0.2)TiO3 (MZTS–CST) ceramics were prepared by a conventional solid‐state route. The MZTS–CST ceramics sintered at 1325°C exhibited εr = 18.2, Q × f = 49 120 GHz (at 8.1 GHz), and τf = 15 ppm/°C. The effects of LiF–Fe2O3–V2O5 (LFV) addition on the sinterability, phase composition, microstructure, and microwave dielectric properties of MZTS–CST were investigated. Eutectic liquid phases 0.12CaF2/0.28MgF2/0.6LiF and MgV2O6 were developed, which lowered the sintering temperature of MZTS–CST ceramics from 1325°C to 950°C. X‐ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS) analysis revealed that MZTS and CST coexisted in the sintered ceramics. Secondary phase Ca5Mg4(VO4)6 as well as residual liquid phase affected the microwave dielectric properties of MZTS–CST composite ceramics. Typically, the MZTS–CST–5.3LFV composite ceramics sintered at 950°C showed excellent microwave dielectric properties: εr = 16.3, Q × f = 30 790 GHz (at 8.3 GHz), and τf = ?10 ppm/°C.  相似文献   

11.
Low‐firing and temperature stable microwave dielectric ceramics of Ba2LnV3O11 (Ln = Nd, Sm) were prepared by solid‐state reaction. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phase purity, crystal structure, sintering behavior, and microstructure. The XRD patterns indicated that Ba2LnV3O11 (Ln = Nd, Sm) ceramics belong to monoclinic crystal system with P21/c space group in the whole sintering temperature range (800°C ‐900°C). Both ceramics could be well densified at 880°C for 4 hours with relative densities higher than 96%. The Ba2LnV3O11 (Ln = Nd, Sm) samples sintered at 880°C for 4 hours exhibited excellent microwave dielectric properties: εr = 12.05, Q × f = 23 010 GHz, τf = ?7.7 ppm/°C, and εr = 12.19, Q × f = 27 120 GHz, τf = ?16.2 ppm/°C, respectively. Besides, Ba2LnV3O11 (Ln = Nd, Sm) ceramics could be well co‐fired with the silver electrode at 880°C.  相似文献   

12.
The Microstructure and microwave dielectric properties of Bi2O3‐deficient Bi12SiO20 ceramics were investigated. A small amount of unreacted Bi2O3 phase melted during sintering at 825°C and assisted with densification and grain growth in all samples. The melted Bi2O3 reacted with remnant SiO2 during cooling to form a Bi4Si3O12 secondary phase. The nominal composition of Bi11.8SiO19.7 ceramics sintered at 825°C for 4 h had a high relative density of 97% of the theoretical density, and good microwave dielectric properties: εr = 39, Q × f = 74 000 GHz, and τf = ?14.1 ppm/°C. Moreover, this ceramic did not react with Ag at 825°C.  相似文献   

13.
The influence of BaCu(B2O5) (BCB) on densification, phases, microstructure and microwave dielectric properties of ZnNb2O6xTiO2 (x = 1.70–1.90) composite ceramics have been investigated. Undoped ZnNb2O6–1.8TiO2 ceramics sintered at 1200°C exhibit temperature coefficient of resonant frequency (τf) ~9.25 ppm/°C. When BaCu(B2O5) was added, the sintering temperature of the ZnNb2O6–1.8TiO2 composite ceramics was effectively reduced to 950°C. The results indicated that the permittivity and Q × f were dependent on the sintering temperature and the amounts of BaCu(B2O5). Addition of 3.0 wt% BaCu(B2O5) in ZnNb2O6–1.8TiO2 ceramics sintered at 950°C showed excellent dielectric properties of εr = 40.9, Q × f = 12,200 GHz (f = 5.015 GHz) and τf = +0.3 ppm/°C.  相似文献   

14.
The sintering behaviors and microwave dielectric properties of the Ca0.4Li0.3Sm0.05Nd0.25TiO3 (abbreviated CLSNT) ceramics with different amounts of BaCu(B2O5) addition were investigated in this paper. Adding BaCu(B2O5) to CLSNT lowered its sintering temperature from 1300 °C to 925 °C. No secondary phase was observed in the CLSNT ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLSNT ceramics with small amounts of BaCu(B2O5) addition could be well sintered at 925 °C without much degradation in the microwave dielectric properties. Especially, the 1.75 wt.% BaCu(B2O5)-doped CLSNT ceramic sample sintered at 925 °C for 3 h had optimum microwave dielectric properties of εr = 93.5 ± 3.2, Q × f = 6486 ± 434 GHz, and τf = 5 ± 1.5 ppm/°C (at 3–4 GHz), enabling it a promising candidate material for LTCC applications. Obviously, BaCu(B2O5) could be a suitable sintering aid to facilitate the densification and microwave dielectric properties of the CLSNT ceramics.  相似文献   

15.
In this study, the spinel solid solution ceramics (1?x)LiFe5O8xLi2ZnTi3O8 (0 ≤ x ≤ 1) were prepared via the solid‐state reaction method. The phase evolution, sintering behaviors, microstructures, magneto‐dielectric properties, and microwave dielectric properties were systematically investigated. The XRD and SEM analysis indicated that the LiFe5O8 phase and the Li2ZnTi3O8 phase were almost fully soluble in each other at any proportion. Meanwhile, the evidence of ionic substitution has been directly observed at the atomic scale by means of scanning transmission electron microscopy, which is further confirmed by the Raman spectroscopy. Evidence shows that the magnetic and dielectric properties are quite sensitive to the compositions. The optimal results with remarkable magneto‐dielectric properties of μ′ = 38.2, tanδμ = 0.25, ε′ = 19.6, tanδε = 8 × 10?3 at 1 MHz, and ε′ = 19.1, Q × f = 10 400 GHz at about 7 GHz have been obtained in 0.25LiFe5O8–0.75Li2ZnTi3O8 sample. The design of complex spinel solid solution can generate novel magneto‐dielectric single‐phase ceramics combining both high permeability and good dielectric properties, which provides a way in developing multifunctional materials for applications in electronic devices.  相似文献   

16.
This study investigated the effects of the addition of Nb2O5 and sintering temperature on the properties of Bi2Mo2O9 ceramics. The ceramics were sintered in air at temperatures ranging from 620°C to 680°C. The addition of small amounts of Nb2O5 as a dopant significantly affected the crystalline phase and the microwave dielectric properties of the Bi2Mo2O9 ceramics. The secondary phase, γ‐Bi2MoO6, was observed when Nb2O5 was added. However, unlike the Bi2Mo2O9 ceramic without Nb2O5 sintered above 645°C, the ceramics with 3 mol% Nb2O5 contained no γ‐Bi2MoO6 when sintered at 660°C. The × f value and τf of the Bi2Mo2O9 ceramics were improved by Nb2O5 doping. The Bi2Mo2O9 ceramics doped with 2 mol% Nb2O5 exhibited the best microwave dielectric properties, with a permittivity of 36.5, a × f value (f = resonant frequency, = 1/dielectric loss at f) of 14100 GHz and τf of +5.5 ppm/°C after sintering at 620°C.  相似文献   

17.
The effects of Li2O–ZnO–B2O3 (LZB) glass addition on densification and dielectric properties of Ba4(Nd0.85Bi0.15)9.33Ti18O54 (BNBT) have been investigated. At a given ratio of ZnO/B2O3, the glass softening point decreases, but the thermal expansion coefficient and dielectric constant increase with increasing Li2O content in the LZB glass. With 10 vol% LZB glass, the densification temperature reduces greatly from 1300°C for pure BNBT to 875°C–900°C for BNBT + LZB dielectric, and the densification enhancement becomes more significant with increasing Li2O content in the LZB glass. The above result is attributed to a chemical reaction taking place at the interface of LZB/BNBT during firing, which becomes less extensive with increasing Li2O content in the LZB glass. Therefore, more residual LZB glass, which acts as a densification promoter to BNBT, is left with increasing Li2O content. For the LZB glass with a Li2O content in the range 10–30 mol%, the resulting 90 vol% BNBT + 10 vol% LZB microwave dielectric has a dielectric constant of 55–70, product (Q × fr) of quality factor (Q) and resonant frequency (fr) of 1000–3000 GHz at 5–5.79 GHz, and a temperature coefficient of resonant frequency (τf) of 10–60 ppm/°C in the temperature range between 25°C and 80°C.  相似文献   

18.
The CaMoO4xY2O3xLi2O ceramics were prepared by the solid‐state reaction method. The sintering behavior, phase evolution, microstructure, and microwave dielectric properties were investigated. CaMoO4 solid solution was obtained when x = 0.030, and two‐phase system including tetragonal CaMoO4 phase and cubic Y2O3 phase formed when 0.066 ≤ x ≤ 1.417. A temperature stable CaMoO4‐based microwave dielectric ceramic with ultralow sintering temperature (775°C) was obtained in the CaMoO4xY2O3xLi2O system when x = 0.306, which showed good microwave dielectric properties with a low permittivity of 9.5, a high Qf value of 63 240 GHz, and a near‐zero temperature coefficient of resonant frequency of +7.2 ppm/°C.  相似文献   

19.
Srn+1TinO3n+1 (n=1, 2) ceramics with tetragonal Ruddlesden–Popper structure were prepared via a standard solid‐state reaction process, and their microstructures and microwave dielectric properties were investigated systematically. The phase composition, grain morphology, and densification behavior were explored using X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Outstanding microwave dielectric properties were achieved in the present ceramics: εr=42, × f=145 200 GHz, τf=130 ppm/°C for Sr2TiO4, and εr=63, × f=84 000 GHz, τf=293 ppm/°C for Sr3Ti2O7, respectively. The present ceramics might be expected as excellent candidates for next‐generation medium‐permittivity microwave dielectric ceramics after the further optimization of τf value.  相似文献   

20.
The structure, microwave dielectric properties, and low‐temperature sintering behavior of acceptor/donor codoped Li2TiO3 ceramics [Li2Ti1?x(Al0.5Nb0.5)xO3, x = 0–0.3] were investigated systematically. The x‐ray diffraction confirmed that a single‐phase solid solution remained within 0 < x ≤ 0.2 and secondary phases started to appear as x > 0.2, accompanied by an order–disorder phase transition in the whole range. Scanning electron microscopy observation indicated that the complex substitution of Al3+ and Nb5+ produced a significant effect on the microstructural morphology. Both microcrack healing and grain growth contributed to the obviously enhanced Q×f values. By comparison, the decrease of εr and τf values was ascribed to the ionic polarizability and the cell volume, respectively. Excellent microwave dielectric properties of εr ~ 21.2, Q×f ~ 181 800 GHz and τf  ~ 12.8 ppm/°C were achieved in the x = 0.15 sample when sintered at 1150°C. After 1.5 mol% BaCu(B2O5) additive was introduced, it could be well sintered at 950°C and exhibited good microwave dielectric properties of εr ~ 20.4, Q×f ~ 53 290 GHz and τf ~ 3.6 ppm/°C as well. The cofiring test of the low‐sintering sample with Ag powder proved its good chemical stability during high temperature, which enables it to be a promising middle‐permittivity candidate material for the applications of low‐temperature cofired ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号