首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Oxidation state of titanium was determined in CaO‐SiO2‐TiOx slags in the composition range 25‐53 percent CaO, 27‐46 percent SiO2, 10‐55 percent TiOx at 1873K using gas equilibration method. In the experiments, slags with different titanium oxide contents were equilibrated with a known carbon monoxide and carbon dioxide ratio. The results were used to determine the Ti3+ and Ti4+ contents as well as the activity coefficient ratio of corresponding oxides in the slag. The dependence of the activity coefficient ratio as a function of oxygen partial pressure was determined.  相似文献   

2.
The rate of nitrogen dissolution in CaO-Al2O3-SiO2 and CaO-Al2O3-TiO x melts was measured by 14N–15N isotope exchange reaction. The rate constant for the CaO-Al2O3-SiO2 melts at the ratio of mass pct CaO/mass pct Al2O3 = 1 increases as SiO2 content increases, whereas the rate constant for the same melts at the ratio of mass pct CaO/mass pct SiO2 = 1 increases as Al2O3 content increases. The rate constant for the CaO-Al2O3-TiO x melts at the ratio of mass pct CaO/mass pct Al2O3 = 1 decreases as the TiO x content increases. The activation energies of nitrogen dissolution in CaO-Al2O3-SiO2 melts are about 1.5 to 3 times larger than that of molten pure iron. Moreover, the rate constant of nitrogen dissolution is independent of the ratio of Ti3+/Ti4+.  相似文献   

3.
Equilibrium studies between CaO-SiO2-10 pct MgO-Al2O3-TiO1.5-TiO2 slags, carbon-saturated iron, and a carbon monoxide atmosphere were performed at 1773 K to determine the activities of TiO1.5 and TiO2 in the slag. These thermodynamic parameters are required to predict the formation of titanium carbonitride in the blast furnace. In order to calculate the activity of titanium oxide, the activity coefficient of titanium in carbon-saturated iron-carbon-titanium alloys was determined by measuring the solubility of titanium in carbon-saturated iron in equilibrium with titanium carbide. The solubility and the activity coefficient of titanium obtained were 1.3 pct and 0.023 relative to 1 wt pct titanium in liquid iron or 0.0013 relative to pure solid titanium at 1773 K, respectively. Over the concentration range studied, the effect of the TiO x content on its activity coefficient is small. In the slag system studied containing 35 to 50 pct CaO, 25 to 45 pct SiO2, 7 to 22 pct Al2O3, and 10 pct MgO, the activity coefficients of TiO1.5 and TiO2 relative to pure solid standard states range from 2.3 to 8.8 and from 0.1 to 0.3, respectively. Using thermodynamic data obtained, the prediction of the formation of titanium carbonitride was made. Assuming hypothetical ‘TiO2,’ i.e., total titanium in the slag expressed as TiO2, and using the values of the activity coefficients of TiO1.5 and TiO2 determined, the equilibrium distribution of titanium between blast furnace-type slags and carbon-saturated iron was computed. The value of [pct Ti]/(pct ‘TiO2’) ranges from 0.1 to 0.2.  相似文献   

4.
The distribution ratio of chromium between a CaO-SiO2-CaF2 slag and liquid silver under the oxygen partial pressure used in practical hot-metal dephosphorization treatment was measured at 1623 K. The distribution ratio was minimal when the basicity index of a slag, wt pct CaO/wt pct SiO2, was about 2. The redox equilibrium between CrO (Cr2+) and CrO1.5 (Cr3+) in the slag was also measured as a function of slag composition. The calculated activity coefficient of CrO had a maximum value at wt pct CaO/wt pct SiO2=2, whereas that of CrO1.5 decreased monotonously with the increase in slag basicity.  相似文献   

5.
Measurements of the rates of reduction of iron oxide from molten CaO-SiO2-Al2O3-Fe x O slags by Ar-CO mixtures have been made using a thermogravimetric method. The apparent first-order rate constant, with respect to the partial pressure of CO, of the gas/slag interfacial reaction was deduced from the measured rates, where the effects of the mass transfer in the gas and slag phases were minimized. It was found that the apparent first-order rate constant decreased with the concentration of ‘FeO’ from 100 to 20 wt pct, whereas it remained essentially constant in the range from 5 to 20 wt pct ‘FeO’. At a given iron oxide concentration, the reduction-rate constant increased significantly with an increase in the CaO/SiO2 ratio. For fixed slag compositions, the reduction rate increased slightly with the oxidation state of the slags. When the rate constant is expressed in the form of k=k′(Fe3+/2+)α, the values of α range from 0.15 to 0.25. The effect of temperature in the range from 1673 to 1873 K on the reduction rate of iron oxide in a 40.4CaO-40.4SiO2-14.2Al2O3-5‘FeO’ (wt pct) slag was studied. The calculated activation energy, based on these results, is 165 kJ/mol.  相似文献   

6.
The distribution of arsenic between calcium ferrite slag and liquid silver (wt pct As in slag/ wt pct As in liquid silver) with 22 wt pct CaO and between iron silicate slag with 24 wt pct SiO2 and calcium iron silicate slags was measured at 1573 K (1300 °C) under a controlled CO-CO2-Ar atmosphere. For the calcium ferrite slags, a broad range of oxygen partial pressure (10–11 to 0.21 atm) was covered, whereas for the silicate slags, the oxygen partial pressure was varied from 10–9 to 3.1 × 10–7 atm. The measured relations between the distribution ratio of As and the oxygen partial pressure indicates that the oxidation state of arsenic in these slags is predominantly As3+ or AsO1.5. The measured distribution ratio of arsenic between the calcium ferrite slag and the liquid silver was about an order of magnitude higher than that of the iron silicate slag. In addition, an increasing concentration of SiO2 in the calcium-ferrite-based melts resulted in decreases in the distribution of arsenic into the slag. Through the use of measured equilibrium data on the arsenic content of the metal and slag in conjunction with the composition dependent on the activity of arsenic in the metal, the activity of AsO1.5 in the slags was deduced. These activity data on AsO1.5 show a negative deviation from the ideal behavior in these slags.  相似文献   

7.
The viscosities of CaO-SiO2(-MgO)-CaF2 slags were measured to clarify the effect of CaF2 on the viscous flow of molten slags at high temperatures and the solidification behavior of slags. Furthermore, the infrared (IR) spectra of the quenched slags were analyzed to understand the structural role of CaF2 in the modification of slag structure. The CaF2 affects the critical temperature (T CR) of the slags; that is, the higher the content of CaF2, the lower the T CR of the slags. It is suggested that some extent of undercooling as a driving force is needed for the precipitation of solid particles in the melt. In the composition of B (≡(mass pct CaO)/(mass pct SiO2)) = 1.0, the T CR was decreased about 150 to 200 K by addition of 10 mass pct MgO, while the T CR was increased about 100 K by MgO addition at B = 1.3. The effect of CaF2 on the viscous flow of molten slags can be understood based on a decrease in the degree of polymerization by F as well as by O2− ions and this was confirmed by the IR spectra of the quenched slags. The relative intensity of the IR bands for [SiO4]-tetrahedra with low NBO/Si decreased, while that of the IR bands for [SiO4]-tetrahedra with high NBO/Si increased with increasing CaF2 content. The decrease in viscosity of the CaO-SiO2-MgO-CaF2 (B = 1.0) system by CaF2 addition was negligible, while the effect of CaF2 on the viscosity was significant in the more basic system (B = 1.3).  相似文献   

8.
The rotating disk methodology has been used for examination of the reduction of FeO from CaO-FeO-SiO2 liquid slags (20 and 60 pct FeO) with a CaO/SiO2 ratio equal to 0.66 and 1.27, in the temperature range 1350 °C to 1420 °C. It has been found that the reduction proceeds under diffusion control. The calculated diffusion coefficients fall in the range 0.76·10−7 to 1.6·10−6 cm2/s. Comparison of these values with those given in the literature suggests that the calculated coefficients are related to the diffusion of oxygen ions in the slag. The calculated thickness of the limiting diffusion layer, δ, ranges from 0.65·10−3 to 5.25·10−3 cm, depending on the reduction conditions. The largest decrease in the limiting diffusion layer thickness takes place at low rotational speeds, i.e., 100 and 400 rev/min. The maximum value of the mass transfer coefficient is 1.71·10−3 cm/s for reduction from slag with a CaO/SiO2 ratio of 1.27, 60 pct FeO, at 1420 °C and 2000 rev/min, and the minimum value is 0.27·10−4 cm/s for reduction from slag with a CaO/SiO2 ratio of 0.66, 20 pct FeO, at 1350 °C and 100 rev/min. Good agreement has been found between experimental and calculated reduction rates at low disk rotations (100 and 400 rev/min).  相似文献   

9.
The effects of CaO, Al2O3, and MgO additions, singly or in combination, on the copper solubility, the Fe3+/Fe2+ ratio in slag, and on the minor-element behavior of silica-saturated iron silicate slags were examined at 1250 °C and a p O2 of 10−12 to 10−6 atm. The results indicated that copper solubility in slag was lowered with the addition of CaO, MgO, and Al2O3, in decreasing order. The Fe3+/Fe2+ ratio in the slag decreased with the additions, but this effect was smaller at lower oxygen potentials. The presence of small amounts (about 4 pct) of CaO, Al2O3, and MgO in the slag resulted in increased absorption of Bi and Sb into molten copper, but had a smaller effect at large additions (about 8 to 11 pct). The distribution behavior of Pb was a function of oxygen partial pressure, which indicates the oxidic dissolution of Pb in the slag as PbO, while the behavior of Bi, Sb, and As was found to be independent of oxygen potential, supporting the atomic (neutral) dissolution hypothesis of these elements in the slag. The distribution behavior of Pb and As was not significantly affected by the additions. The activity coefficients of Bi and Sb in the slags were determined to be as follows: (1) for no addition, γ Bi=40 and γ Sb=0.4; (2) for small additions (about 4.4 pct), γ Bi=70 to 85 and γ Sb=0.8; and (3) for large additions (about 8 to 11 pct), γ Bi=60 to 75 and γ Sb=0.5 to 0.7.  相似文献   

10.
The oxidation state of niobium has been determined at 1873 K (1600 °C) in CaO-SiO2-NbO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93 and 1.10, and 5.72 to 11.44 pct Nb2O5 (initial). The slag samples were equilibrated with gas phases of controlled oxygen pressure, then quenched to room temperature and analyzed chemically. The niobium is mainly pentavalent with small amounts in the tetravalent state. It was found that the Nb5+/Nb4+ ratio increases with oxygen pressure at a constant CaO/SiO2 ratio and constant content of total niobium, closely according to the ideal law of mass action, which is proportional to \textp\textO2 1/4 . {\text{p}}_{{{\text{O}}_{2} }}^{1/4} . The ratio also increases with total niobium content, and it seems to have a maximum at a basicity of about 0.93. The color of the solidified slag samples is described and is explained with the help of transmission spectra.  相似文献   

11.
The pseudoternary section “FeO”-ZnO-(CaO + SiO2) with a CaO/SiO2 weight ratio of 0.71 in equilibrium with metallic iron has been experimentally investigated in the temperature range from 1000 °C to 1300 °C (1273 to 1573 K). The liquidus surface in this pseudoternary section has been determined in the composition range of 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2). The system contains primary-phase fields of wustite (Fe x Zn1−x O1−y ), zincite (Zn z Fe1−z O), fayalite (Fe w Zn2−w SiO4), melilite (Ca2Zn u Fe1−u Si2O7), and pseudowollastonite (CaSiO3). The phase equilibria involving the liquid phase and the solid solutions have also been measured.  相似文献   

12.
Using a gas-slag-metal equilibration technique, nitrogen contents in BaO-TiO^ slags and nitrogen and titanium contents in liquid Cu were measured at 1823, 1873, and 1923 K under controlled partial pressures of oxygen(@#@ PO 2 = 10-11.5 ≈ 10-13.7 atm) and nitrogen(@#@ PN 2 = 0.9 atm). The nitride capacity, C(N) [=(mass pct N) · PO2/3/4, (mass pct Ti3+)/(mass pct Ti4+) ratio, and solubility of TiN in BaO-TiO2-TiO1.5 slags were obtained as a function of slag com-position(@#@ XBaO = 0.20 = 0.43) and temperature. Activity coefficients of TiN were estimated, using the values for activity coefficients of Ti in liquid Cu which were calculated from the results of a TiN saturation experiment. Free energy of dissolution of nitrogen into liquid Cu was derived as °GGN o = 32,400 + 46.17 ± 1400 (J/g · atom).  相似文献   

13.
In view of the importance of the thermodynamic behavior of chromium in the slag phase as well as the serious discrepancies in the earlier reports on the valence state of chromium in slag melts, the oxidation state of chromium oxides in CaO-SiO2-CrOx and CaO-MgO-(FeO-) Al2O3-SiO2-CrOx were investigated experimentally in the present study using two different experimental techniques. The gas–slag equilibrium technique was adopted to study the CaO-SiO2-CrOx system between 1823 K (1550 °C) and 1923 K (1650 °C) and equilibrated with mixtures of CO-CO2-Ar gases corresponding to three different oxygen partial pressures (between 10−4 and 10−5 Pa). After equilibrating, the samples were quenched and subjected to analysis using the X-ray absorption near edge structure method to determine the distribution ratio of Cr2+/Cr3+ in the slags. The second technique examined the applicability of the high-temperature mass spectrometric method combined with the Knuden effusion cell for quantifying the valence states of Cr in the multicomponent system CaO-MgO-(FeO-) Al2O3-SiO2-CrOx up to a maximum temperature of 2000 K (1727 °C). The results showed that the Knudsen cell-mass spectrometric method could be used successfully to estimate the valence ratio for Cr in silicate melts. According to the present study, the Cr2+/Cr3+ ratio increased with increasing temperature and a decreasing slag basicity as well as the oxygen partial pressure prevailing in the system. A mathematical correlation of X CrO/X CrO1.5 as a function of temperature, oxygen partial pressure, and basicity was developed in the present work based on the present results as well as on those assessed from earlier data.  相似文献   

14.
A sulfide capacity prediction model of CaO-SiO2-MgO-FeO-MnO-Al2O3 ladle furnace (LF) refining slags has been developed based on the ion and molecule coexistence theory (IMCT). The predicted sulfide capacity of the LF refining slags has better accuracy than the measured sulfide capacity of the slags at the middle and final stages during the LF refining process. Increasing slag binary basicity, optical basicity, and the Mannesmann index can lead to an increase of the predicted sulfide capacity for the LF refining slags as well as to an increase of the sulfur distribution ratio between the slags and molten steel at the middle and final stages during the LF refining process. The calculated equilibrium mole numbers, mass action concentrations of structural units or ion couples, rather than mass percentages of components, are recommended to represent the slag composition for correlating with the sulfide capacity of the slags. The developed sulfide capacity IMCT model can calculate not only the total sulfide capacity of the slags but also the respective sulfide capacity of free CaO, MgO, FeO, and MnO in the slags. The comprehensive contribution of the combined ion couples (Ca2+ + O2−) and (Mn2+ + O2−) on the desulfurization reactions accounts for 96.23 pct; meanwhile, the average contribution of the ion couple (Fe2+ + O2−) and (Mg2+ + O2−) only has a negligible contribution as 3.13 pct and 0.25 pct during the LF refining process, respectively. The oxygen activity of bulk molten steel in LF is controlled by the [Al]–[O] equilibrium, and the oxygen activity of molten steel at the slag–metal interface is controlled by the (FeO)–[O] equilibrium. The ratio of the oxygen activity of molten steel at the slag–metal interface to the oxygen activity of bulk molten steel will decrease from 37 to 5 at the initial stage, and further decrease from 28 to 4 at the middle stage, but will maintain at a reliable constant as 5 to 14 at the final stage during the LF refining process. The proposed high-oxygen potential layer of molten steel beneath the slag–metal interface can be quantitatively verified.  相似文献   

15.
The effect of Na2O on the equilibrium phosphorous distribution ratio between slag and iron or iron alloys, LP, has been measured for CaO-SiO2, CaO-FeOr-SiO2 (CaO or 2CaO·SiO2 saturated), and CaO-Al2-SiO2 slags. The addition of Na2O to CaO-SiO2 slags significantly increases LP and the phosphate capacity. A 25 pct CaO-25 pct Na2O-SiO2 slag has a distribution ratio nearly two orders of magnitude greater than a comparable binary 50 pct CaO-SiO2 slag. For the CaO-saturated slags containing 40 wt pct FeOT, the addition of 6 wt pct Na2O increases LP by a factor of 5. For the 2CaO·SiO2-saturated CaO-FeOT-SiO2 slag, there is an optimum FeOr content (20 wt pct) for dephosphorization, and 10 wt pct Na2O increases LP by a factor of 2. For reducing slags typically used in ladle metallurgy for Al-killed steels (50 pct CaO-40 pct Al2O3-10 pct SiO2), as little as 3 wt pct Na2O increases LP by a factor of 100. The present results indicate that small additions of Na2O to conventional steelmaking slags can greatly improve dephosphorization. Formerly Graduate Student, Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University.  相似文献   

16.
Redox equilibria, activities of cobalt, iron and their oxides in calcium ferrite and calcium ironsilicate slags, were measured through metal-slag-gas equilibrium experiments under controlled oxygen potentials (10−7 to 3 × 10−7 atm) at 1573 K. Results on the redox equilibria show that addition of CoO to calcium ferrite slag increases the equilibrium Fe3+/Fe2+ ratio in these melts. Measured activities of CoO and FeO showed positive deviations from ideal behavior, while that of Fe2O3 showed negative deviation. Partial substitution of CaO by SiO2, by up to 4 wt pct SiO2 in the calcium ferrite based melts, resulted in increases in the activity coefficients of CoO and Fe2O3. Phase equilibria studies on the cobalt containing CaO-FeO-Fe2O3-SiO2 slags were also carried out using the drop-quench technique. Good agreement between the activity data and the liquidus temperature with respect to magnetite solid solution containing CoO was observed.  相似文献   

17.
The values of the activity of Cr2O3 in the slags based on the CaF2−CaO−Cr2O3 and the CaF2−Al2O3−Cr2O3 systems which may be used in the electroslag remelting (E.S.R.) process have been determined at 1450, 1500 and 1550°C by equilibrating the slags with Pt−Cr alloys of known chromium activity under known oxygen partial pressure and studying the equilibrium 2[Cr] alloy+3/2 O2(g)=(Cr2O3)slag. It was found that activity of Cr2O3 decreases with the addition of CaO and Al2O3 in the respective systems. In slags containing less than about 20 wt pct CaO and in the Al2O3 bearing slags, solutions of Cr2O3 showed a positive deviation from ideality and in slags containing more than 20 wt pct CaO, they showed a negative deviation. Both the authors were formerly with the Department of Metallurgy, University of Sheffield, England  相似文献   

18.
The reduction rate of SiO2 from CaO-SiO2-Al2O3 and CaO-SiO2-Al2O3-TiO2 slags by carbon-saturated iron melts was investigated over the temperature range 1350 °C to 1600 °C under an argon atmosphere. It was found that the reduction rate of silicon increased with in-creasing temperature and decreased with increasing ratio of CaO/SiO2 in these slags. A kinetic analysis of the experimental results developed on the basis of the two film theory showed that the silicon transport rate from slag to metal phase was controlled by the rate of chemical reaction at the slag-metal interface. The rate constants obtained for the reaction were 10 g m-2 s-1 at 1550 °C. The apparent activation energy was 238.0 kJ mol-1.  相似文献   

19.
New measurements have been made on the phase equilibria of magnesia-saturated CaO-FeOx-SiO2 slags at 1573 K (1300 °C) and an oxygen partial pressure of 10−9 atm. The thermodynamic behavior of selenium (Se) and tellurium (Te) in the slag and the stability of oxide mineral phases within the slag were examined as a function of slag composition. The measured equilibrium distribution of Se and Te between the slag and the copper showed nonlinear dependence on the slag basicity, reaching maxima at CaO/(CaO + SiO2) ratios of about 0.2 and 1 and a minimum at a ratio of about 0.5. The solubility of the copper oxide in the bulk slag also passed through a minimum value at a ratio of about 0.5. Results from drop-quench experiments confirmed the stability of various oxide solid solution phases at 1573 K (1300 °C) that had virtually no solubility for Se and Te. The deduced capacity of the liquid slag for Se was found to be independent of basicity in relatively basic slags, and decreased sharply as SiO2 replaced CaO in relatively acidic slags.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号