首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
SnO2-doped CaSiO3 ceramics were successfully synthesized by a solid-state method. Effects of different SnO2 additions on the sintering behavior, microstructure and dielectric properties of Ca(Sn1−xSix)O3 (x=0.5–1.0) ceramics have been investigated. SnO2 improved the densification process and expanded the sintering temperature range effectively. Moreover, Sn4+ substituting for Si4+ sites leads to the emergence of Ca3SnSi2O9 phase, which has a positive effect on the dielectric properties of CaO–SiO2–SnO2 materials, especially the Qf value. The Ca(Sn0.1Si0.9)O3 ceramics sintered at 1375 °C possessed good microwave dielectric properties: εr =7.92, Qf =58,000 GHz and τf=−42 ppm/°C. The Ca(Sn0.4Si0.6)O3 ceramics sintered at 1450 °C also exhibited good microwave dielectric properties of εr=9.27, Qf=63,000 GHz, and τf=−52 ppm/°C. Thus, they are promising candidate materials for millimeter-wave devices.  相似文献   

2.
The diopside ceramics with a formula of Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6 (x=0.01–0.3) were synthesized via a traditional solid-state reaction method, and their solid solubility, sintering behavior and microwave dielectric properties were investigated. The results revealed that the solubility limit of Al2O3 in Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6, which is defined as x, was between 0.15 and 0.2, and a second phase of CaAl2SiO6 presented when the x value reached 0.2. Appropriate Al3+ substitution for Mg2+ and Si4+ could promote the sintering process and lower the densification temperature, and a broadened densification temperature range of 1250–1300 °C was obtained for the compositions of x=0.08–0.15. With the increase of the x value, the dielectric constant (εr) increased roughly linearly, and the temperature coefficient of frequency (τf) showed a rising trend. The Q×f values increased from 57,322 GHz to 59,772 GHz as the x value increased from 0.01 to 0.08, and then they were saturated in the range of x=0.08–0.2. Further increase of the x value (x≥0.25) deteriorated the microwave dielectric properties. Good microwave dielectric properties of εr=7.89, Q×f=59,772 GHz and τf=−42.12 ppm/°C were obtained for the ceramics with the composition of x=0.08 sintered at 1275 °C.  相似文献   

3.
In this study, the effects of CaTiO3 addition on the sintering characteristics and microwave dielectric properties of BiSbO4 were investigated. Pure BiSbO4 achieved a sintered density of 8.46 g/cm3 at 1100 °C. The value of sintered density decreased with increasing CaTiO3, and sintering at a temperature higher than 1100 °C led to a large weight loss (>2 wt%) caused by the volatile nature of the compound. Samples either sintered above 1100 °C or with a CaTiO3 content exceeding 3 wt% showed poor densification. SEM micrographs revealed microstructures with bimodal grain size distribution. The size of the smaller grains ranged from 0.5 to 1.2 μm and that of the larger grains between 3 and 7 μm. The microwave dielectric properties of the (1−x) BiSbO4−x CaTiO3 ceramics are dependent both on the x value and on the sintering temperature. The 99.0 wt% BiSbO4–1.0 wt% CaTiO3 ceramic sintered at 1100 °C reported overall microwave dielectric properties that can be summarized as εr≈21.8, Q×f≈61,150 GHz, and τf≈−40.1 ppm/°C, all superior to those of the BiSbO4 ceramics sintered with other additives.  相似文献   

4.
Ceramic samples based on ZnO-Nb2O5-TiO2 compositions have been prepared using solid state ceramic route. The work was carried out over a wide range of initial ZnNb2O6 and Zn0.17Nb0.33Ti0.5O2 compounds concentration. The crystal structure and microstructure developments were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was shown that the phase compositions of the samples present itself a columbite type and mixture of two phases—solid solutions of columbite and rutile types.The sintering behavior, permittivity, its temperature coefficients and quality factor had been characterized for ceramic samples in depending on compositions. The permittivity of the samples in this system is within the limits from 24 to 80, τ? from 150 to −560 ppm/°C. For the samples with τ? ∼ 0, ?r ∼ 43.8 and Q·f = 35000 GHz at f = 9 GHz. The comparatively low sintering temperature (≤1080 °C) and high dielectric properties in microwave range make these ceramics promising for application in electronics.  相似文献   

5.
The phenomena of liquid phase sintering in the V2O5 modified (Zr0.8, Sn0.2)TiO4 (ZST) microwave ceramics has been investigated by using transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The amounts of second phase were too low to be detected by X-ray diffraction (XRD), but could be observed by TEM bright field image. However, the presence of grain boundary phases did not degrade the microwave properties of V2O5 modified ZST ceramics. The ?r value of 37.2, Q × f value of 51,000 (at 7 GHz) and τf value of −2.1 ppm/°C were obtained for ZST ceramics with 1 wt% V2O5 addition sintered at 1300 °C.  相似文献   

6.
The complex perovskite oxide Ba(Zn1/3Nb2/3)O3 (BZN) has been studied for its attractive dielectric properties which place this material interesting for applications as multilayer ceramics capacitors or hyperfrequency resonators. This material is sinterable at low temperature with combined glass phase–lithium salt additions, and exhibits, at 1 MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 2 wt.% of ZnO–SiO2–B2O3 glass phase and 1 wt.% of LiF-added BZN sample sintered at 900 °C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant ?r of 39, low dielectrics losses (tan(δ) < 10−3) and a temperature coefficient of permittivity τ? of 45 ppm/°C−1. The 2 wt.% ZnO–SiO2–B2O3 glass phase and 1 wt.% of B2O3-added BZN sintered at 930 °C exhibits also attractive dielectric properties (?r = 38, tan(δ) < 10−3) and it is more interesting in terms of temperature coefficient of the permittivity (τ? = −5 ppm/°C). Their good dielectric properties and their compatibility with Ag electrodes, make these ceramics suitable for L.T.C.C applications.  相似文献   

7.
Doped hexagonal BaTiO3 (h-BaTiO3) ceramics have recently been identified as potential candidates for use in microwave dielectric resonators. However, similar to other common microwave ceramics, doped h-BaTiO3 ceramics require a sintering temperature higher than 1400 °C. In this study, the effects of Bi2O3 and Li2CO3 on the densification, microstructural evolution and microwave properties of hexagonal 12R-Ba(Ti0.5Mn0.5)O3 ceramics were examined. Results indicate that Bi2O3 and Li2CO3 are able to effectively reduce the sintering temperature of 12R-Ba(Ti05Mn0.5)O3 ceramics through liquid phase sintering while retaining the hexagonal structure and the microwave dielectric properties. The best results were obtained for the 12R-Ba(Ti0.5Mn0.5)O3 with the additions of 5 wt% Bi2O3 sintered at 1200 °C (?r: 36.0, Qfr: 6779 GHz, and τf: 25.3 ppm/°C), and 5 wt% Li2CO3 sintered at 1200 °C (?r: 28.1, Qfr: 5304 GHz, and τf: 35.3 ppm/°C).  相似文献   

8.
Li2ZnTi3O8 ceramics doped with ZnO–La2O3–B2O3 glass were prepared by the conventional solid-state ceramic route. The effects of the ZnO–La2O3–B2O3 glass on the sintering temperature, phase composition, microstructure and microwave dielectric properties of Li2ZnTi3O8 ceramics were investigated. The addition of ZLB glass can reduce the sintering temperature of Li2ZnTi3O8 ceramic from 1075 °C to 925 °C without obvious degradation of the microwave dielectric properties. Only a single phase Li2ZnTi3O8 with cubic spinel structure is formed in Li2ZnTi3O8 ceramic with ZLB addition sintered at 925 °C. Typically, 1.0 wt% ZLB-doped Li2ZnTi3O8 ceramic sintered at 925 °C can reach a maximum relative density of 95.8% and exhibits good microwave dielectric properties of εr=24.34, Q×f=41,360 GHz and τf=−13.4 ppm/°C. Moreover, this material is compatible with Ag electrode, which makes it a promising candidate for LTCC application.  相似文献   

9.
The RE3Al5O12 (RE=Tb, Y, Er, Yb) ceramics have been prepared by the mixed oxide route and the influence of Ga3+ doping on their properties is investigated. The intrinsic Y3Al5O12 (YAG) ceramic sintered at 1650 °C for 4 h showed good dielectric properties; (εr=10.1, Qu×f=65,000 GHz, τf=−45 ppm/°C). Addition of Ga2O3 was found to be beneficial in improving the densification of Tb3Al5O12, Er3Al5O12 and Yb3Al5O12 except Y3Al5O12 where Nb2O5 is the better choice. Among Ga3+ added samples, the composition Yb3Al5O12+1 wt% Ga2O3 showed good microwave dielectric properties: εr=10.3, Qu×f=50,000 GHz, τf=−58 ppm/°C. The Y3Al5O12 doped with 1 wt% Nb2O5 has εr=10.7, Qu×f=120,000 GHz and τf=−45 ppm/°C. The ceramics have good thermal properties (CTE=2–3 ppm/°C, λ=2–12 W/m K).  相似文献   

10.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

11.
The microwave dielectric properties of (BaxMg1−x)(A0.05Ti0.95)TiO3 (A=Zr, Sn) ceramics were investigated with regard to substitution of Ba for Mg of A-site. The microwave dielectric properties were correlated with the Ba content. With an increase in Ba content from 0.01 to 0.1, the dielectric constant and the τf value increased, but the Q×f value decreased. The sintered (BaxMg1−x)(Zr0.05Ti0.95)TiO3 (called BxMZT) ceramics had a permittivity in the range of 19.1−20.6, quality factor from 180,000 to 25,000 GHz, and variation in temperature coefficient of resonant frequency from −35 to −39 ppm/°C with increasing composition x. For sintered (BaxMg1−x)(Sn0.05Ti0.95)TiO3 (called BxMST) ceramics, the dielectric constant increased from 19 to 20.5, Q×f value increased from 120,000 to 37,000 (GHz), and the τf value increased from −50 to −3.3 ppm/°C as the x increased from 0.01 to 0.1. When A=Sn and x=0.1, (Ba0.1Mg0.9)(Sn0.05Ti0.95)TiO3 ceramics exhibited dielectric constant of 20.5, Q×f value of 37,000 (GHz), and a near-zero τf value of −3.3 ppm/°C sintered at 1210 °C for 4 h.  相似文献   

12.
The preparation and dielectric properties of 3ZnO·B2O3 ceramics were investigated. Dense 3ZnO·B2O3 ceramics were obtained as sintered in the temperature range from 950 to 1000 °C for 3 h. The X-ray diffraction showed that the obtained ceramics were of a monoclinic 3ZnO·B2O3 structure. The ceramic specimens fired at 955 °C for 1 h exhibited excellent microwave dielectric properties: ?r ∼ 6.9, Q × f ∼ 20,647 GHz (@6.35 GHz), and τf ∼ −80 ppm/°C. The dependences of relative density, ?r, and Q × f of ceramics sintered at 955 °C on sintering soaking time showed that they all reached their plateaus as the soaking time was up to 60 min. Meanwhile, 3ZnO·B2O3 ceramics had no reaction with silver during cofiring, indicating it is a potential candidate for low-temperature cofired ceramic (LTCC) substrate.  相似文献   

13.
Bi2O3 was selected as liquid phase sintering aid to lower the sintering temperature of La(Mg0.5Ti0.5)O3 ceramics. The sintering temperature of La(Mg0.5Ti0.5)O3 ceramics is generally high, about 1600 °C. However, the sintering temperature was significantly lowered about 275 °C from 1600 °C to 1325 °C by incorporating in 15 mol% Bi2O3 and revealed the optimum microwave dielectric properties of dielectric constant (?r) value of 40.1, a quality factor (Q × f) value of 60,231 GHz, and the temperature coefficient (τf) value of 70.1 ppm/°C. During all addition ranges, the relative dielectric constants (?r) were different and ranged from 32.0 to 41.9, the quality factors (Q × f) were distributed in the range of 928–60,231 GHz, and the temperature coefficient (τf) varies from 0.3 ppm/°C to 70.3 ppm/°C. Noticeably, a nearly zero τf can be found for doping 5 mol% Bi2O3 sintering at 1325 °C. It implies that nearly zero τf can be achieved by appropriately adjusting the amount of Bi2O3 additions and sintering temperature for La(Mg0.5Ti0.5)O3 ceramics.  相似文献   

14.
The effects of CuO, Li2CO3 and CaTiO3 additives on the densification, microstructure and microwave dielectric properties of CaSiO3–1 wt% Al2O3 ceramics for low-temperature co-fired applications were investigated. With a single addition of 1 wt% Li2CO3, the CaSiO3–1 wt% Al2O3 ceramic required a temperature of at least 975 °C to be dense enough. Large amount addition of Li2CO3 into the CaSiO3–1 wt% Al2O3 ceramics led to the visible presence of Li2Ca3Si6O16 and Li2Ca4Si4O13 second phases. Fixing the Li2CO3 content at 1 wt%, a small amount of CuO addition significantly promoted the sintering process and lowered the densification temperature to 900 °C whereas its addition deteriorated the microwave dielectric properties of CaSiO3–1 wt% Al2O3 ceramics. Based on 10 wt% CaTiO3 compensation in temperature coefficient, good microwave dielectric properties of εr=8.92, Q×f=19,763 GHz and τf=−1.22 ppm/°C could be obtained for the 0.2 wt% CuO and 1.5 wt% Li2CO3 doped CaSiO3–1 wt% Al2O3 ceramics sintered at 900 °C. The chemical compatibility of the above ceramics with silver during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between silver and ceramics, indicating that the as-prepared composite ceramics were suitable for low-temperature co-fired ceramics applications.  相似文献   

15.
Ba4Nd9.33Ti18O54·x wt%Al2O3 (BNT-A) ceramics (x=0, 0.5, 1.0, 1.5, 2.0, 2.5) were prepared by the conventional solid state reaction. The effects of Al2O3 on the microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 (BNT) ceramics were investigated. X-ray diffraction and backscatter electronic images showed that the Al2O3 additive gave rise to a second phase BaAl2Ti5O14 (BAT). The formation mechanism and grain growth of the BAT phase were first discussed. Dielectric property test revealed that the Al2O3 additive had improved the dielectric properties of the BNT ceramics: increased the Q×f value from 8270 to 12,180 GHz and decreased the τf value from 53.4 to 11.2 ppm/°C. A BNT-A ceramic with excellent dielectric properties: εr=70.2, Q×f=12,180 GHz, τf=20 ppm/°C was obtained with 2.0 wt% Al2O3 added after sintering at 1320 °C for 4 h.  相似文献   

16.
Single-phase dielectric ceramics Li2CuxZn1−xTi3O8 (x=0–1) were synthesized by the conventional solid-state ceramic route. All the solid solutions adopted Li2MTi3O8 cubic spinel structure in which Li/M and Ti show 1:3 order in octahedral sites whereas Li and M are distributed randomly in tetrahedral sites with the degree of Li/M cation mixing varying from 0.5 to 0.3. The substitution of Cu for Zn effectively lowered the sintering temperatures of the ceramics from 1050 to 850 °C and significantly affected the dielectric properties. As x increased from 0 to 0.5, τf gradually increased while the dielectric constant (εr) and quality factor value (Q×f) gradually decreased, and a near-zero τf of 1.6 ppm/°C with εr of 25.2, Q×f of 32,100 GHz could be achieved for Li2Cu0.1Zn0.9Ti3O8 ceramic sintered at 950 °C, which make it become an attractive promising candidate for LTCC application. As x increases from 0.5 to 1, the dielectric loss significantly increases with AC conductivity increasing up to 2.3×10−4 S/cm (at 1 MHz).  相似文献   

17.
The effect of WO3 addition on the phase formation, the microstructures and the microwave dielectric properties of 1 wt% ZnO doped 0.95MgTiO3–0.05CaTiO3 ceramics system were investigated. Formation of second phase MgTi2O5 could be effectively restrained through the addition of WO3, but should be in right amount. WO3 as additives could not only effectively lower the sintering temperature of the ceramics to 1310 °C, but also promote the densification. A dielectric constant εr of 20.02, a Q×f value of 62,000 (at 7 GHz), and a τf value of −5.1 ppm/°C were obtained for 1 wt% ZnO doped 0.95MgTiO3–0.05CaTiO3 ceramics with 0.5 wt% WO3 addition sintered at 1310 °C.  相似文献   

18.
The effects of aqueous gelcasting and dry pressing on the sinterability and microwave dielectric properties of 90 wt.% (0.75ZnAl2O4-0.25TiO2)-10 wt.% MgTiO3(ZTM) ceramics have been investigated. It is found that aqueous gelcasting could effectively decrease the sintering temperature of ZTM ceramics by 100 °C and acquire more excellent microwave dielectric properties of ZTM ceramics compared with conventional dry pressing. X-ray diffraction (XRD), environment scanning electron microscope (ESEM) and energy-dispersive X-ray spectroscopy (EDX) were used to analyze the phase compositions and microstructures of ZTM ceramics. The results illustrate that the phase compositions are completely uniform no matter what sintering temperature and forming method are adopted. However, the densities, ?r and Q × f values are greatly affected by different forming methods, whereas there are few effects on the τf values. It is observed that ZTM ceramics prepared by aqueous gelcasting exhibit greater densities, more excellent and stable microwave dielectric properties compared with that prepared by dry pressing at the relative low sintering temperatures. However, when the sintering temperature becomes higher, the opposite phenomenon would gradually appear.  相似文献   

19.
The microwave dielectric properties of Nd(Mg0.5−xCaxSn0.5)O3 ceramics were examined to evaluate their exploitation in mobile communication. The X-ray diffraction patterns of Nd(Mg0.43Ca0.07Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Nd(Mg0.43Ca0.07Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h had the following properties: a density of 6.88 g/cm3, a dielectric constant (εr) of 19.51, a quality factor (Qf) of 100,400 GHz, and a temperature coefficient of resonant frequency (τf) of −57.8 ppm/°C. The proposed hybrid dielectric resonator covered the industrial, scientific, medical (ISM), high-performance radio local area network (HIPERLAN), and unlicensed national information infrastructure (UNII) bands. A 12.5% bandwidth (return loss <10 dB) of 2.43 GHz, and a 14.2% bandwidth (return loss <10 dB) of 5.62 GHz were successfully achieved.  相似文献   

20.
Microwave dielectric properties and microstructure of 0.98CeO2–0.02CaTiO3 ceramics with B2O3 additions prepared with the conventional solid-state route have been investigated. 0.98CeO2–0.02CaTiO3 ceramics can be sintered at 1290 °C for 4 h due to the sintering aid effect resulting from the B2O3 additions. At sintering temperature of 1380 °C for 4 h, 0.98CeO2–0.02CaTiO3 ceramics with 0.25 wt% B2O3 addition possess a dielectric constant (?r) of 21.3, a Q × f value of 60,000 (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −41 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号