首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高含量纳米掺杂易团聚会导致空间电荷积聚、电场畸变,从而降低材料的绝缘性能。为了提升高含量纳米颗粒在基体中的分散性,采用等离子体对纳米氧化铝表面进行处理,制备了纳米氧化铝质量分数为10%的环氧树脂纳米复合材料,利用扫描电子显微镜对颗粒的分散性进行表征,采用高温空间电荷测量装置和电导电流测试系统研究了不同温度阶梯式升压下试样的电荷动力学特性。结果表明,等离子体处理能有效地抑制高含量纳米氧化铝的团聚。高温下纳米氧化铝质量分数为10%的试样空间电荷输运明显,电导率提高了近3个数量级;等离子体处理后的含10%纳米氧化铝试样始终保持最低的电荷量和电导率,且电导率与电场强度呈近似线性关系。等离子处理后的纳米氧化铝能有效地抑制高温下空间电荷的注入、积聚与输运,降低载流子迁移和电导活化能,提升高温下环氧树脂复合材料的电气性能。基于结果与分析提出了高温阶梯式升压下等离子处理前后纳米颗粒对环氧树脂复合材料的电荷动力学特性的作用机理。  相似文献   

2.
通过添加微、纳米氧化铝颗粒,制备了氧化铝/环氧树脂复合材料。研究了不同粒径、不同含量氧化铝颗粒对复合材料空间电荷的影响;同时对试样进行高温高湿环境下交流电场老化,再次测量其空间电荷分布,比较分析氧化铝/环氧树脂复合材料在老化前后的电气特性。实验结果表明,微、纳米氧化铝的掺杂使复合材料在直流高压电场下聚集更多空间电荷,且随着氧化铝质量分数的增加而增加,而纳米复合材料积聚空间电荷的现象比微米复合材料更明显。通过比较空间电荷分布发现常温固化型环氧树脂材料在固化过程中,微米氧化铝颗粒在环氧树脂中会发生明显的沉降现象,从而形成含量差异明显的上、下氧化铝/环氧树脂复合材料。将复合材料在80℃、90%RH的环境和AC 20k V/mm电场强度下,连续老化16h,并测量其空间电荷分布,结果表明纳米氧化铝/环氧树脂复合材料相对于纯环氧树脂、微米氧化铝/环氧树脂复合材料具有更好的抗老化能力。  相似文献   

3.
环氧复合材料在高温高场等复杂的工况下易积聚空间电荷,造成局部场强畸变,严重时将引发局部放电乃至绝缘击穿。通过纳米MgO颗粒与环氧树脂(EP)混合制备不同掺杂率的纳米MgO/EP复合电介质,采用差示扫描量热分析(DSC)测试环氧复合电介质的玻璃化转变温度;采用热刺激去极化电流法(TSDC)拟合计算环氧复合电介质的陷阱特性;采用电声脉冲法(PEA)测试环氧复合电介质的空间电荷特性。结果表明:纳米MgO颗粒的添加可以提高环氧树脂的玻璃化转变温度,抑制环氧树脂内空间电荷积聚。随着纳米MgO掺杂率的增加,纳米MgO/EP复合电介质的玻璃化转变温度先上升后下降,深陷阱能级和密度均先增大后减小;空间电荷密度先下降后上升,电场畸变的变化趋势与空间电荷的变化趋势相似。当纳米MgO掺杂率为3%时,纳米MgO/EP复合电介质的玻璃化温度达到最大值,抑制空间电荷积聚和场强畸变的能力最好。  相似文献   

4.
研究直流电压下环氧树脂复合材料的电荷输运特性对推进直流气体绝缘金属封闭输电线路的发展至为重要。文中基于双极性载流子输运模型,通过对0、30、60、105℃下环氧树脂内部的空间电荷分布规律进行数值计算研究,获得了温度对环氧树脂材料内部空间电荷输运特性的影响规律,以及不同温度下环氧树脂复合材料内电场强度分布规律。结果表明:在0℃和30℃下,环氧树脂复合材料内为电子电荷主导,迁移作用使得靠近阳极附近的电场强度升高。随着温度的升高,电荷分布到达稳态所需要的时间随之减少,而电场强度最大值也随之降低。60℃和105℃下环氧树脂内电荷分布与0℃和30℃下的电荷分布呈现完全不同的趋势。高温下电荷的迁移作用和陷阱的捕获作用加强,使得电荷更为容易积聚与电极附近,从而同时削弱阳极和阴极与材料界面处的电场强度。研究成果可以为直流输电管道绝缘子的材料改性和空间电荷特性的精密调控提供理论依据。  相似文献   

5.
吕泽鹏  吴锴  王霞  成永红  刘通  李锐海 《高电压技术》2012,38(10):2755-2765
低密度聚乙烯(LDPE)纳米复合材料的厚度从μm级到cm级不等,差异极大。为此,研究了LDPE纳米复合材料中空间电荷的积聚对其厚度的依赖性。基于已有的LDPE纳米复合材料,采用电声脉冲(PEA)法测量了不同厚度的无掺杂LDPE及掺杂有纳米填料的LDPE纳米复合材料在50kV/mm电场强度下的电荷积聚特性。发现无掺杂LDPE中电荷积聚不随试样厚度发生明显变化;而LDPE纳米复合材料中电荷积聚对试样厚度有明显的依赖性:试样厚度越厚,异极性电荷的抑制效果越好。根据以上实验现象,以双极子模型为基础、结合陷阱势能理论进行仿真,探讨了无掺杂LDPE中异极性电荷的形成机理,指出纳米填料不仅作为陷阱中心而且作为复合中心直接影响着试样中空间电荷的积聚特性,2种材料不同的厚度依赖性是由于复合作用的强度不同而造成的。  相似文献   

6.
将不同质量分数的SiO_2纳米粒子与低密度聚乙烯(LDPE)复合制备了聚乙烯纳米复合材料,并以纯LDPE作为对照样品,控制拉伸率为10%,利用电声脉冲法(PEA)测量样品内部空间电荷的分布,研究拉伸状态下复合材料内部的空间电荷积聚特性。结果表明:纯LDPE样品在拉伸后空间电荷积聚明显减少,说明拉伸具有抑制LDPE材料内部空间电荷积聚的作用;LDPE/SiO_2复合材料样品在掺杂SiO_2纳米粒子及拉伸后,材料内部空间电荷积聚均有减少,说明掺杂SiO_2纳米粒子和拉伸均有抑制材料内部空间电荷积聚的作用,其中SiO_2纳米粒子对空间电荷的抑制效果随着掺杂量的增加呈现先增大后减小的趋势。掺杂SiO_2纳米粒子引入界面区域是抑制空间电荷积聚的主要原因,而拉伸导致的内部结构变化是影响空间电荷和陷阱分布特性的主要原因。  相似文献   

7.
高温与强电场作用下环氧树脂绝缘空间电荷注入诱发电场畸变,加剧绝缘劣化甚至引起击穿放电故障,严重威胁电力、电子设备安全稳定运行。纳米掺杂在提升环氧树脂复合材料介电性能方面表现优异,但高温与强电场下纳米复合材料的空间电荷注入抑制效果及机理仍有待进一步证实与分析。该文制备了不同含量富勒烯(C60)掺杂的环氧树脂纳米复合材料,采用改进的电声脉冲法研究其在高温(80℃、150℃)和强电场(100、150k V/mm)条件下空间电荷注入与积聚特性。结果表明,C60的引入对高温、强电场下环氧树脂绝缘电荷注入和积累有明显的抑制作用。基于密度泛函理论计算分析环氧树脂和富勒烯的分子轨道能级和3D电势分布规律,发现C60量子点能够调控EP/C60纳米复合材料电荷输运行为,抑制载流子的注入,减少空间电荷的积累。上述试验和仿真结果证明,掺杂C60可以有效改善环氧树脂绝缘高温和强电场下空间电荷注入特性。  相似文献   

8.
乙丙橡胶在电缆绝缘中的应用日益广泛,空间电荷积聚成为影响其绝缘性能的关键因素之一。为了明确乙丙橡胶中空间电荷的行为特性及形成机制,文中基于PEA法对乙丙橡胶在直流场强下的空间电荷分布进行了研究,分析并讨论了不同场强下乙丙橡胶内空间电荷的分布规律以及其消散特性。实验结果表明:乙丙橡胶的电荷注入的阈值场强为2.5~5 kV/mm。根据不同场强下乙丙橡胶内空间电荷的行为特性,可将其分为4个阶段,分别为无电极注入阶段、双电极注入阶段、注入电荷迁移复合阶段、阳极注入主导阶段。此外,不同场强下陷阱密度及深度的差异会影响乙丙橡胶内部空间电荷的消散特性。在较高场强下,正极性空间电荷包的形成引起乙丙橡胶内部电场畸变,这可能会影响其介电强度,并使绝缘老化。  相似文献   

9.
纳米氧化铝对硅橡胶空间电荷特性的影响   总被引:7,自引:5,他引:2  
周远翔  郭绍伟  聂琼  刘睿  候非 《高电压技术》2010,36(7):1605-1611
为研究硅橡胶的空间电荷特性,开展了纳米氧化铝对硅橡胶空间电荷行为影响的试验研究。通过制备纳米氧化铝(Al2O3)改性液体硅橡胶,利用电声脉冲法(pulse electro-acoustic method,PEA法)测量了纳米氧化铝质量份数对硅橡胶空间电荷特性的影响规律。根据空间电荷消散过程计算了不同纳米氧化铝质量份数硅橡胶的陷阱深度,并分析了空间电荷对硅橡胶性能的影响机理。试验结果表明随着纳米氧化铝质量份数的提高,相同外加场强下,硅橡胶试品的空间电荷积聚量增加,撤压后消散也更为迅速,迁移率随纳米氧化铝质量份数的提高而增大,陷阱深度则随之逐渐减小。分析认为,空间电荷特性随着纳米氧化铝质量份数的增加而呈现变化归因于纳米界面效应导致的陷阱能级分裂,浅陷阱密度增大,从而使得硅橡胶中空间电荷积聚量减少,消散更为迅速。  相似文献   

10.
根据在高场强下聚合物中的空间电荷主要来源于电荷的注入,而电荷的注入决定于聚合物的界面特性,用氟气表面处理聚乙烯试样改变表面层化学结构,来研究表面层的极性对空间电荷形成和注入的影响。测量了在不同场强下加压一定时间后短路条件下聚乙烯和表面氟化聚乙烯中空间电荷的分布情况,发现表面氟化聚乙烯的电荷注入的起始场强比聚乙烯试样的低,而且在相同场强下界面和介质中的空间电荷比聚乙烯多,在80kV/mm的高场强下表面氟化聚乙烯产生了空穴的注入,并通过测量材料的红外谱图对以上现象给出了微观的物理解释。  相似文献   

11.
通过研究不同电老化过程中直流电场对油纸绝缘的空间电荷特性的影响,可为换流变压器在长期高场强运行下油纸绝缘的空间电荷特性提供试验依据。利用电声脉冲法研究了油纸绝缘在20 k V/mm的直流电场下老化1 000 h不同阶段下的空间电荷特性,结果表明:在电老化的不同阶段,油纸绝缘在极化过程中的空间电荷特性主要表现为都出现了同极性电荷注入和积聚;随着老化程度的加深,油纸绝缘内部积聚电荷量越大,去极化电荷消散速率越慢,老化过程中陷阱密度和深度都在增大,促进空间电荷被陷阱捕获而积聚;整个电老化过程中,快速运动电荷量变化不大,而慢速运动电荷量逐渐增大主要是由于陷阱密度的增大,导致电荷迁移率下降;电老化过程中电荷的积聚导致极化过程中电场畸变明显,容易产生大电流而使击穿电压下降。  相似文献   

12.
聚合物绝缘材料中空间电荷的注入、输运、积聚和消散过程与材料的陷阱特性密切相关。为研究氧化石墨烯(GO)添加对聚乙烯材料陷阱特性的影响,制备了GO质量分数分别为0.001%、0.005%、0.01%、0.02%、0.05%的氧化石墨烯/低密度聚乙烯(LDPE)纳米复合材料,基于等温表面电位衰减(ISPD)法研究了30℃、50℃和70℃下GO/LDPE纳米复合材料的陷阱分布特性。研究发现:GO/LDPE试样均存在2个陷阱能级中心,随GO质量分数从0增加至0.05%,试样陷阱能级呈现先增大后减小的趋势;当GO质量分数为0.01%时,复合材料的深陷阱能级和密度最大;随着温度的升高,复合材料深陷阱中心所捕获的电荷更易发生脱陷过程,从而导致复合材料视在深陷阱能级增大。分析认为,质量分数为0.01%的GO纳米添加可以增大复合材料深陷阱密度,降低载流子迁移率,从而有效抑制电荷向试样内部的迁移过程。  相似文献   

13.
在电缆聚乙烯材料中添加一种新型纳米粒子可以有效改善材料中的空间电荷积聚,提高其直流击穿强度和体积电阻率。为深入了解此纳米粒子作用机理,基于电声脉冲法(PEA)和充电-放电电流法,分别测量了在不同温度下、不同纳米含量时聚乙烯纳米复合材料的极化/去极化特性。用PEA方法得到不同温度下材料的平均电荷体密度、视在迁移率和陷阱深度,结果表明,20~40°C下,纯聚乙烯及聚乙烯纳米复合材料试样内的陷阱以浅陷阱分布为主;80°C下,当聚乙烯中纳米粒子质量分数>3%时,会增加复合材料陷阱深度。用充电-放电电流法计算得到材料的迁移率,可知在20~60°C内,不同试样迁移率的变化主要由纳米粒子和温度共同作用产生,而在60~80°C内,迁移率的变化则是温度起主要作用。分析认为,电荷输运受到陷阱与温度的影响是导致电阻率变化的主要原因,而在温度梯度场下,聚乙烯纳米复合材料电阻率的正温度系数趋势是抑制材料内空间电荷积聚的主要原因。  相似文献   

14.
硅橡胶作为直流电缆附件中的主绝缘材料,存在空间电荷积聚的问题,研究硅橡胶纳米复合材料的陷阱特性对抑制聚合物材料的空间电荷积聚有重要意义。为此,以甲基乙烯基硅橡胶为基胶,制备了掺杂不同质量分数(5%、10%和20%)纳米SiO_2粒子的硅橡胶纳米复合试样,通过扫描电子显微镜观测了试样的断面形貌,采用电容探头测量了试样在正、负电晕充电条件下的电位衰减特性,并结合双陷阱能级模型和等温表面电位衰减模型,获得了各试样的空穴陷阱特性和电子陷阱特性。研究结果表明:无纳米掺杂的纯硅橡胶试样中空穴陷阱多为浅陷阱,电子陷阱多为深陷阱;与纯硅橡胶相比,掺杂纳米SiO_2粒子的质量分数为5%时,复合材料中空穴深陷阱密度增多,并且空穴陷阱和电子陷阱均以深陷阱为主;而当复合材料中纳米SiO_2粒子质量分数增大至10%和20%时,其空穴和电子深陷阱密度显著下降,材料内部大量的浅陷阱有助于其电荷的消散。研究成果可为直流电缆附件中硅橡胶材料的改性提供一定的参考。  相似文献   

15.
空间电荷积聚对直流电缆的使用寿命和运行安全有重要影响,研究聚乙烯材料内陷阱电荷的分布特性并进一步分析其内部陷阱分布特性,对抑制聚合物材料中空间电荷积聚、提高直流电缆运行的可靠性具有重要意义。通过考虑聚合物材料内电荷的脱陷规律,提出了一个计算聚合物内陷阱分布的等温表面电位衰减(isothermal surface potential decay,ISPD)模型。通过测量低密度聚乙烯(low-density polyethylene,LDPE)和高密度聚乙烯(high-density polyethylene,HDPE)试样分别在正、负电晕放电充电条件下的表面电位衰减特性,获得其相应的陷阱分布规律,并根据2种试样不同的形态学特性进行分析。结果表明:LDPE与HDPE内陷阱主要以深陷阱为主,陷阱密度近似为1021 m^(-3),与其它文献报道的相一致;HDPE内电子深陷阱多于LDPE内电子深陷阱,电子浅陷阱少于LDPE内电子浅陷阱;LDPE内电子深陷阱多于空穴深陷阱,电子浅陷阱少于空穴浅陷阱。分析认为:LDPE与HDPE独特的聚集态结构,以及电子和空穴电导的差异对陷阱电荷分布产生重要影响。  相似文献   

16.
挤塑型交联聚乙烯(XLPE)高压直流电缆绝缘中空间电荷的积聚会造成局部场强畸变,导致材料的绝缘性能下降。电缆内导体的热效应在绝缘层产生的温度梯度会进一步影响电荷行为,纳米颗粒改性是抑制空间电荷的一种有效措施,但抑制作用具体如何实现,尤其是对于微观层面载流子输运过程的影响规律还需深入分析。试样内空间电荷的数值仿真可以探究各种微观粒子之间的相互作用和演化过程,因此文中基于载流子抽出受限的双极性电荷输运模型,对温度梯度下的电荷行为,深陷阱与浅陷阱对于载流子迁移过程的影响进行了研究。结果表明:低温侧会因抽出受限而积聚异极性电荷,深陷阱会限制载流子输运且深陷阱作用存在瓶颈,随着迁移率增大,电荷分布由同极性变为异极性分布,当迁移率足够大时,异极性电荷不再增长甚至开始降低。  相似文献   

17.
大容量气体绝缘管道输电(GIL)运行过程中产生的温升问题会加速环氧树脂绝缘子老化,温度梯度下绝缘子表面电荷行为也与沿面闪络密切相关。为解决上述问题,制备了环氧树脂/氮化硼(EP/BN)高导热复合材料,研究其在加热至60oC再散热不同时间下针板电晕后的表面电荷动态特性。结果表明:在相同温度下,试样表面电荷消散速度随着BN含量的增加而先减慢后加快,起始表面电荷密度先升高后降低;对于同一种试样,随着散热时间的增加,表面电荷消散速度变慢,起始表面电荷密度升高,且通过陷阱能级分布特性发现,试样的深、浅陷阱能级均变低,深陷阱密度增大,浅陷阱密度减小,且BN掺杂含量越高,该分布特性越明显。  相似文献   

18.
空间电荷积聚对直流电缆的使用寿命和运行安全有重要影响,研究聚乙烯材料内陷阱电荷的分布特性并进一步分析其内部陷阱分布特性,对抑制聚合物材料中空间电荷积聚、提高直流电缆运行的可靠性具有重要意义。通过考虑聚合物材料内电荷的脱陷规律,提出了一个计算聚合物内陷阱分布的等温表面电位衰减(isothermal surface potential decay,ISPD)模型。通过测量低密度聚乙烯(low-density polyethylene,LDPE)和高密度聚乙烯(high-density polyethylene,HDPE)试样分别在正、负电晕放电充电条件下的表面电位衰减特性,获得其相应的陷阱分布规律,并根据2种试样不同的形态学特性进行分析。结果表明:LDPE与HDPE内陷阱主要以深陷阱为主,陷阱密度近似为1021 m~(-3),与其它文献报道的相一致;HDPE内电子深陷阱多于LDPE内电子深陷阱,电子浅陷阱少于LDPE内电子浅陷阱;LDPE内电子深陷阱多于空穴深陷阱,电子浅陷阱少于空穴浅陷阱。分析认为:LDPE与HDPE独特的聚集态结构,以及电子和空穴电导的差异对陷阱电荷分布产生重要影响。  相似文献   

19.
聚丙烯(PP)/聚烯烃弹性体(POE)共混物被认为可替代交联聚乙烯应用于高压直流电缆中。电力电缆在制作、安装和运行过程中会受到机械应力作用,为研究其对电缆绝缘性能的影响,采用电声脉冲法(PEA)测试并分析了不同拉伸比下PP/POE共混物的空间电荷分布特性,并采用表面电荷衰减方法分析了不同试样的陷阱能级分布。研究结果表明:机械拉伸能促进PP/POE共混物内空间电荷的迁移和积累,其中拉伸比为1.2时空间电荷积聚最多;当拉伸比从1增加到1.2时,试样中浅陷阱密度增大,深陷阱的密度与深度减小;当拉伸比从1.2增加到1.4,试样中浅陷阱密度减小,深陷阱的密度与深度增大。分析认为,PP/POE共混物内部结构的变化为拉伸影响空间电荷和陷阱分布特性的主要原因。  相似文献   

20.
为研究石墨烯导电填料的加入对环氧材料电导机理的影响,制备了不同填料质量比下石墨烯/环氧树脂复合材料。通过测量得到该复合体系的渗流阈值为质量分数1.35%,选择了石墨烯填料质量分数为0.3%、远低于渗流阈值的复合材料进行研究。利用高温高场强电导电流测试系统,测量了纯环氧材料和石墨烯/环氧复合材料在50、80和100℃下和0.24~14.4 k V/mm场强下的极化电流曲线。研究结果表明:直流电压作用下,两种材料的极化电流衰减速率均随场强和温度的增加而增大。随着场强的增大,两种材料的电导机理均发生了从欧姆电导到空间电荷限制电流理论(SCLC)为主导的转变,且这种转变电导电流场强阈值(Ethi)随温度的升高而降低。石墨烯填料的加入使环氧材料电导电流密度活化能增大,且活化能随着场强的增加逐渐降低,石墨烯/环氧复合材料在高场强区的电导机理受SCLC和隧道效应共同影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号