首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Microelectronics Journal》1999,30(4-5):367-371
The exciton dynamics in In0.15Ga0.85As/GaAs quantum wells grown on (111)B and (100) GaAs substrates are studied by the time-resolved photoluminescence (PL). We have found that the piezoelectric fields in (111)B samples affect the transient behavior of PL spectra. Compared with the reference (100) samples, we have confirmed that the piezoelectric effect induces slower exciton relaxation in (111)B strained quantum wells.  相似文献   

2.
GalnSb alloys as well as the constituent binaries InSb and GaSb have been grown by organometallic vapor phase epitaxy using the new antimony precursor trisdimethylaminoantimony (TDMASb) combined with conventional group III precursors trimethylindium (TMIn) and trimethylgallium (TMGa). InSb layers were grown at temperatures between 275 and 425°C. The low values of V/III ratio required to obtain good morphologies at the lowest temperatures indicate that the pyrolysis temperature is low for TDMASb. In fact, at the lowest temperatures, the InSb growth efficiency is higher than for other antimony precursors, indicating the TDMASb pyrolysis products assist with TMIn pyrolysis. A similar, but less pronounced trend is observed for GaSb growth at temperatures of less than 500°C. No excess carbon contamination is observed for either the InSb or GaSb layers. Ga1-xInxSb layers with excellent morphologies with values of x between 0 and 0.5 were grown on GaSb substrates without the use of graded layers. The growth temperature was 525°C and the values of V/III ratio, optimized for each value of x, ranged between 1.25 and 1.38. Strong photoluminescence (PL) was observed for values of x of less than 0.3, with values of halfwidth ranging from 13 to 16 meV, somewhat smaller than previous reports for layers grown using conventional precursors without the use of graded layers at the interface. The PL intensity was observed to decrease significantly for higher values of x. The PL peak energies were found to track the band gap energy; thus, the luminescence is due to band edge processes. The layers were all p-type with carrier concentrations of approximately 1017 cm3. Transmission electron diffraction studies indicate that the Ga0.5In0.5 Sb layers are ordered. Two variants of the Cu-Pt structure are observed with nearly the same diffracted intensities. This is the first report of ordering in GalnSb alloys.  相似文献   

3.
We report the ellipsometric and photoluminescence (PL) properties of Indium zinc oxide (IZO) films, which were grown by radio frequency sputtering under Ar and O2 atmospheres. IZO films grown under an O2 atmosphere (IZO (O2)) showed enhanced PL properties when compared to the films grown under an Ar atmosphere (IZO (Ar)), particularly with respect to the band-edge emission. The enhancement of band-edge emission can be attributed to the reduction in the non-emissive defect states related to oxygen vacancies, which were repaired by sputtering under O2 atmosphere, whereas the PL enhancement in green region is probably due to the formation of the different types of defects under the excess oxygen environment. This was also supported by the results of time-resolved PL measurements, where the band-edge emission of IZO (Ar) showed rapid decay with a 50 ps lifetime, which indicates the dominance of the relaxation pathway to underlying defect states. In contrast, the PL decay profiles of IZO (O2) for band-edge and emissive defect states showed moderate decay with time-constants of 2.3 ns and 5.7 ns, respectively. The exciton relaxation dynamics were sensitive to the presence and its kinds of defect states, which were controlled by the growth conditions.  相似文献   

4.
We report new high-resolution scanning photoluminescence (PL) experiments in the mid-infrared (IR) portion of the spectrum. The samples investigated were Hg0.7Cd0.3Te epilayers grown on Cd0.96Zn0.04Te substrates. The influence of macrodefects and the annealing of samples on the PL signal were studied. Transmission spectra were used to map the optical path variations of the epilayer.  相似文献   

5.
High quality of AlxGa1−xAs alloys have been grown by the LP-MOVPE using tertiary-butyl arsine as group V precursor in 100% nitrogen ambient. The photoluminescence (PL) properties of Al0.25Ga0.75As alloy grown at different temperature have been studied. The PL peak emission intensity of the samples increases with the substrate growth temperature initially and saturated at the growth temperature 760°C. The emission intensity decreases when further increase the temperature. This is attributed to the oxygen content in the samples.  相似文献   

6.
By monitoring the cyclic behavior of surface photoabsorption (SPA) reflectance changes during the growth of GaAs at 650°C and with sufficient H2 purging time between the supply of trimethylgallium and AsH3, we have been able to achieve controlled growth of GaAs down to a monolayer. Our results show, as confirmed by photoluminescence (PL) measurements, the possibility of growing highly accurate quantum well heterostructures by metalorganic chemical vapor deposition at conventional growth temperatures. We also present our PL measurements on the InGaAs single quantum wells grown at this temperature by monitoring the SPA signal.  相似文献   

7.
Photocapacitance (PHCAP) and photoluminescence (PL) measurements were applied to unintentionally doped p-type Al0.38Ga0.62As grown by liquid phase epitaxy using the temperature difference method under controlled vapor pressure. PHCAP spectra revealed three dominant deep levels at Ev+0.9, Ev + 1.45, and Ev+1.96 eV, and a deep level at Ev+0.9−1.5 eV which was not neutralized by forward bias injection. These level densities increase with increasing arsenic vapor pressure and net shallow acceptor density. Furthermore, PL spectra reveal a deep level at 1.6–1.7 eV. The PL intensity of this deep level increases with increasing arsenic vapor pressure. These deep levels are thought to be associated with excess As.  相似文献   

8.
We present a temperature-dependence photoluminescence of (GaAs)5/(AlAs)5 superlattice grown on (311)A-oriented semi-insulating substrate by molecular beam epitaxy. The temperature dependence reveals an anomalous decrease of the PL width, which is explained in terms of phonon-assisted thermal activation of localized excitons.  相似文献   

9.
Results of photoluminescence (PL) studies of self-organized nanoscale InP islands (quantum dots, QDs) in the In0.49Ga0.51P matrix, grown on a GaAs substrate by metalorganic vapor phase epitaxy (MOVPE), are presented. Dependences of the PL efficiency on temperature in the range 77–300 K and on excitation level at pumping power densities of 0.01–5 kW/cm2 have been obtained. The PL spectra are a superposition of emission peaks from QDs and the wetting layer. Their intensity ratio depends on the pumping power and temperature, and the emission wavelength varies in the range 0.65–0.73 μm. At 77 K and low excitation level, InP QDs exhibit high temperature stability of the emission wavelength and high quantum efficiency. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 35, No. 2, 2001, pp. 242–244. Original Russian Text Copyright ? 2001 by Vinokurov, Kapitonov, Nikolaev, Sokolova, Tarasov.  相似文献   

10.
In this work, we propose a method of calculation for estimating the drift mobility from photoluminescence (PL). The method is based on the difference between the temperature of the scattered carriers after thermalization and the lattice temperature. The effective carrier temperature TE was determined experimentally by fitting the high-energy region of PL spectra. The total mobility is obtained from the mobility calculated for different scattering mechanisms and the application of the Matthiessen rule. The method was used on InGaAsP semiconducting alloys grown by liquid phase epitaxy. The calculated mobility values for different InGaAsP samples agree with those reported for these alloys.  相似文献   

11.
Relaxed Si1−xGex layers grown by rapid thermal chemical vapor deposition (RTCVD) have been characterized by photoluminescence (PL) spectroscopy. The structures consist of a Si1−xGex capping layer with a 0.32 and 0.52 Ge concentration, grown on a compositionally graded Si1−xGex buffer layer. The effect of the composition grading rate on the layer quality has been intensively studied. Well-resolved near band edge luminescence (excitonic lines with no-phonon and phonon replica similar as in bulk SiGe alloys) coming from the relaxed alloy capping layer and dislocation-related bands (Dl, D2, D3, D4 lines) in the graded buffer layer have been measured. The electronic quality of this relaxed capping layer, controlled by the design of the compositionally graded buffer layer, has been determined by the excitonic photoluminescence. A detailed analysis of the energy of the D4 dislocation band demonstrates that the main misfit dislocations remain confined in the first steps of the graded buffer layer. Si1−xGex layers grown on these pseudo-substrates either under compressive or tensile strain and the well-defined PL results obtained are discussed on the bases of strain symmetrization and of high quality of the layers. This points out the possibility of using such high quality relaxed Si1−xGex layers as substrates for the integration of new devices associated with Si technology.  相似文献   

12.
In this study, the effects of growth interruptions on Al0.17Ga0.83As/GaAs and GaAs/ InxGa1-xAs quantum wells (QWs) grown by organometallic chemical vapor deposition (OMCVD) were assessed using low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Growth interruption times were varied between 60, 10, and 0 sec. For both material systems, as the interruption time was reduced, the ground-state QW transition energies increased, while the linewidths of the peaks decreased. For the Al0.17Ga0.83As/GaAs structures, 5 K PL data suggests that the incorporation of impurities is enhanced by longer growth interruption times. In addition, as the interruption time was reduced, the energy separation between the 5 K PL and PLE peaks (Stokes shift) decreased, and was as low as 2.6 meV for no interruption. For GaAs/In0.11Ga0.89As samples, 2 K PL data indicated that the incorporation of donor species was not a function of the growth interruption time.  相似文献   

13.
Optical properties of InAs1−xNx/In0.53Ga0.47As (hereafter, abbreviated as InAsN/InGaAs) single quantum wells (SQWs) grown on InP substrates by gas source molecular-beam epitaxy are studied using photoluminescence (PL) measurements. By comparing the low-temperature PL spectra of InAs/InGaAs and InAsN/InGaAs SQWs, InAs and InAsN phases are found to coexist in the InAsN layer. Such serious alloy inhomogeneities result in obvious exciton localization by potential irregularities. The blue shift of the PL peak after rapid thermal annealing (RTA) is found to originate mainly from As-N interdiffusion inside the well layer. According to the temperature-dependent PL results, uniformity of the InAsN layer can be effectively improved by RTA, and the exciton localization is, thus, relieved. Comparison of luminescence quenching and excitation-power-dependent PL behavior between the QWs with and without nitrogen content suggests that the quality of the QW is degraded by the introduction of nitrogen, and the degradation can only be partially recovered by post-growth RTA.  相似文献   

14.
We have grown strained Cd1-xZnxTe(x ≈ 0.2)/CdTe single and multiple quantum wells by molecular beam epitaxy. GaAs was used as a substrate. The well widths were systematically increased until the critical thickness was exceeded. Low-temperature (liquid helium) photoluminescence (PL) spectroscopy was used to characterize the films. Two prominent PL peaks were observed: one arising from the quantum well and the other from the barrier material. The energy of the quantum well luminescence is consistent with theory when strain is included. The critical layer thickness for the CdTe quantum wells was found to be between 150 and 175 å, in agreement with the model of Matthews and Blakeslee.  相似文献   

15.
The optical properties of ZnO/Mg x Zn1−x O (x = 0.17) quantum wells (QWs) grown on c-plane sapphire substrates by pulsed laser deposition are presented. A blueshift in the low-temperature photoluminescence (PL) of the QWs illustrates quantum confinement effects as a function of ZnO well widths in the range from 3 nm to 10 nm. Enhanced luminescence properties are observed with increasing quantum confinement. PL data indicate weak polarization effects associated with the heterojunctions. Temperature-dependent PL measurements indicate carrier/exciton localization with activation energy of approximately 4−5 meV, which are attributed to potential fluctuations at the well-barrier interface.  相似文献   

16.
In this paper, we present the results of structural and room temperature photoluminescence studies on porous GaAs (π-GaAs) capped with GaAs. The porous structure formation was confirmed by scanning electron microscopy (SEM) and relatively homogeneous pores of diameters as small as 4 nm was grown along <111>B directions. X-ray diffraction (XRD) investigations confirm the high crystal quality of the capping layer and a lattice mismatch of 4% between the two layers was determined. The room temperature photoluminescence (PL) spectrum of porous GaAs recorded during steady-state excitation shows a strong PL covering the red–blue band. Time resolved photoluminescence (PLRT) investigations provide evidence for the existence of PL components with different origins.  相似文献   

17.
A TiO2 nanotube array was grown electrochemically by using single and mixed electrolyte/s with 20 V constant potential at room temperature. Anodization was carried out for 120 min using five different electrolytes, e.g., H3PO4, NH4F, HF, NH4F with H3PO4 and HF with H3PO4. Structural characterizations of the grown titania nanotubes were conducted by using x-ray diffraction and field emission scanning electron microscopy. Optical properties of the grown nanotubes were investigated through photoluminescence (PL) spectroscopy. In the case of the 4 M H3PO4 electrolyte, no perceptible growth of nanotubes was observed. The individual electrolytes of 0.3 M NH4F and 1 M HF resulted into the formation of the wall-connected nanotubes. In contrast, the mixed electrolytes comprising the strong (NH4F, HF) and weak (H3PO4) electrolytes have been found to be efficient for the growth of wall-separated titania nanotubes. The results of the PL spectroscopy have demonstrated that the free-standing nanotubes offer low PL intensity compared to its connected counterpart owing to the lower carrier recombination rate of free-standing nanotubes.  相似文献   

18.
The electrical and optical properties of zinc oxide (ZnO) films doped with different Na contents and grown by pulsed laser deposition were investigated. Hall measurements witnessed the conductivity conversion from n-type to p-type with targeted Na doping content increased up to more than 1%. The photoluminescence intensity first decreased as the targeted Na content increased to 1%, while non-degraded and even enhanced PL intensity was observed in p-type ZnO:Na0.02 film. This photoluminescence enhancement was ascribed to enhanced radiative recombination with more acceptor (NaZn) introduced. The band-gap shift of ZnO:Nax films was related to the variation of carrier type and concentration. Band-gap shrinkage was adopted to explain the carrier type- and concentration-dependent band-gap shift of ZnO:Nax films.  相似文献   

19.
In the photoluminescence (PL) spectra of Si1?xGex multi-quantum wells (MQW) grown by conventional solid source molecular beam epitaxy (MBE), phonon-resolved, near-bandgap transitions due to shallow dopant bound exciton or free exciton recombination were observed when the well thickness was less than 40–100Å, depending on x. Increasing the Si1?xGex well thickness caused the emergence of a broad, unresolved PL peak ~120 meV lower in energy than the expected bandgap energy. Interstitial-type platelets, less than 15Å in diameter, were measured by plan view transmission microscopy to occur in densities that correlated well with the intensity of the broad PL peak. A platelet density of ~108 cm?2 per well was sufficient to completely quench the phonon-resolved PL. Etching experiments revealed that within a given MQW, the platelet density is lowest in the first grown well and progressively increases in subsequent wells with increasing strain energy density, indicating that platelet formation is strictly a morphological phenomenon and suggesting that a strain relaxation mechanism is in effect before the onset of relaxation by misfit dislocation injection.  相似文献   

20.
In this paper, we present a technological process that can be used to prepare strain-relaxed InAsP/InGaAs bilayer membranes, 0.8% lattice mismatched to InP substrates, with diameters up to 300 μm. It is shown that high-quality thick In0.65Ga0.35As layers can be grown fully relaxed on these membranes, without any structural defect, as demonstrated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoluminescence (PL) characterizations. The critical thickness of InAs layers grown on InAs0.25P0.75 templates is enhanced from 15 ? to 60 ? when compared to InP substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号