首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modifications performed to convert a gasoline carbureted engine-generator set to a bi-fuel (hydrogen/gasoline) electronic fuel-injected power unit are described. Main changes affected the gasoline and gas injectors, the injector seats on the existing inlet manifold, camshaft and crankshaft wheels with their corresponding Hall sensors, throttle position and oil temperature sensors as well as the electronic management unit. When working on gasoline, the engine-generator set was able to provide up to 8 kW of continuous electric power (10 kW peak power), whereas working on hydrogen it provided up to 5 kW of electric power at an engine speed of 3000 rpm. The air-to-fuel equivalence ratio (λ) was adjusted to stoichiometric (λ = 1) for gasoline. In contrast, when using hydrogen the engine worked ultra-lean (λ = 3) in the absence of connected electric load and richer as the load increased. Comparisons of the fuel consumptions and pollutant emissions running on gasoline and hydrogen were performed at the same engine speed and electric loads between 1 and 5 kW. The specific fuel consumption was much lower with the engine running on hydrogen than on gasoline. At 5 kW of load up to 26% of thermal efficiency was reached with hydrogen whereas only 20% was achieved with the engine running on gasoline. Regarding the NOx emissions, they were low, of the order of 30 ppm for loads below 4 kW for the engine-generator set working on hydrogen. The bi-fuel engine is very reliable and the required modifications can be performed without excessive difficulties thus allowing taking advantage of the well-established existing fabrication processes of internal combustion engines looking to speed up the implementation of the energetic uses of hydrogen.  相似文献   

2.
This article investigates the effect of hydrogen induction on the characteristics of a CI engine fueled with the blend of camphor oil and diesel, along with diethyl ether (DEE) as an additive. The fuel sample was prepared by mixing 70% camphor oil with 30% diesel (C7D3) on a volume basis and then tested with 4 LPM (C7D3H4), 6 LPM (C7D3H6), and 8 LPM (C7D3H8) of hydrogen induction on the engine intake manifold. DEE was mixed at 10% and 20% with 90% and 80% of C7D3 on a volume basis and evaluated with 8 LPM of hydrogen induction; the resulting mixtures were designated as C7D3H8E10 and C7D3H8E20. The maximum thermal efficiency for C7D3H8E10 is 32.97%, with a minimum BSEC of 10.91 MJ/kgh, CO of 5.22 g/kWh, HC of 0.206 g/kWh, and smoke opacity of 39.6%. Hydrogen induction and increasing the quantity of hydrogen from 4 lpm to 8 lpm in the manifold increases the thermal efficiency to 32.63%. Further, it reduces the BSEC to 11.03 MJ/kgh, CO of 5.65 g/kWh, HC of 0.222 g/kW, and smoke opacity of 46.3%. NOx emissions were found to increase while increasing the hydrogen induction and with a 10% DEE addition to the C7D3 fuel. Further, raising the DEE from a 10%–20% ratio reduces the thermal efficiency and increases the BSEC, CO, HC, and smoke emissions. Overall, C7D3 in CI engines with 10% more DEE and hydrogen induction up to 8 LPM may be used efficiently.  相似文献   

3.
This work investigates the performance and carbon dioxide (CO2) emissions from a stationary diesel engine fueled with diesel oil (B5) and hydrogen (H2). The performance parameters investigated were specific fuel consumption, effective engine efficiency and volumetric efficiency. The engine was operated varying the nominal load from 0 kW to 40 kW, with diesel oil being directly injected in the combustion chamber. Hydrogen was injected in the intake manifold, substituting diesel oil in concentrations of 5%, 10%, 15% and 20% on energy basis, keeping the original settings of diesel oil injection. The results show that partial substitution of diesel oil by hydrogen at the test conditions does not affect significantly specific fuel consumption and effective engine efficiency, and decreases the volumetric efficiency by up to 6%. On the other hand the use of hydrogen reduced CO2 emissions by up to 12%, indicating that it can be applied to engines to reduce global warming effects.  相似文献   

4.
Recent surges in crude oil prices have motivated researchers to find an alternative sustainable fuel called biodiesel from various inedible oils with lower carbo impact on the environment. The research is performed in diesel engine fuelled with blends of biodiesel coupled with cerium oxide nanoparticles and hydrogen content so as to optimize various factors which are responsible for performance, vibration and emission characteristics. Multi-objective optimization is achieved by employing RSM which also examines prime input parameters (engine load, nanoparticle concentration, compression ratio, hydrogen blend percentage and ignition pressure) responsible in varying engine characteristics. Henceforth, blends of Water Hyacinth can be successfully applied in diesel engine with lower environmental impact and enhanced cost effectiveness. Experimentation is performed on the central composite rotating design (CCRD) matrix with 5-level factor. Engine load was applied between 0 and 100%, NPC varied between 0 and 80 ppm, CR ranges between 17 and 19, hydrogen blend percentage varies between 0 and 40% and at a maximum injection pressure of 240 bar. Pareto-optimal conditions achieved for input conditions of 28.68% biofuel blend, 87.88 engine load, 80 ppm NPC, compression ratio of 19 and 194.54 bar infusion pressure were BTE, BSEC, NOx, UBHC and vibration reduction are 33.57%, 0.2550, 461.3002 ppm vol., and 28.08 ppm vol. And 22.21%, respectively.  相似文献   

5.
We investigated the generating efficiency and pollutant emissions of a four-stroke spark-ignition gas engine generator operating on biogas–hydrogen blends of varying excess air ratios and hydrogen concentrations. Experiments were carried out at a constant engine speed of 1200 rpm and a constant electric power output of 10 kW. The experimental results showed that the peak values of generating efficiency, maximum cylinder pressure, and NOx emissions were elevated at an excess air ratio of around 1.2 as the hydrogen concentration was increased. CO2 emissions decreased as the excess air ratio and hydrogen concentration increased, due to lean-burn conditions and hydrogen combustion. An efficiency per NOx emissions ratio (EPN) was defined to consider the relationship between the generating efficiency and NOx emissions. A maximum EPN value of 0.7502 was obtained with a hydrogen concentration of 15%, for an excess air ratio of 2.0. At this EPN value, the NOx and CO2 emissions were 39 ppm and 1678.32 g/kWh, respectively, and the generating efficiency was 29.26%. These results demonstrated that the addition of hydrogen to biogas enabled the effective generation of electricity using a gas engine generator through lean-burn combustion.  相似文献   

6.
In contrast to conventional technologies of hydrogen production like water electrolysis or coal gasification we propose a method based on the atmospheric pressure microwave plasma. In this paper we present results of the experimental investigations of the hydrogen production from ethanol in the atmospheric pressure plasma generated in waveguide-supplied cylindrical type nozzleless microwave (915 MHz and 2.45 GHz) plasma source (MPS). Argon, nitrogen and carbon dioxide were used as a working gas. All experimental tests were performed with the working gas flow rate Q ranged from 1500 to 3900 NL/h and absorbed microwave power PA up to 6 kW. Ethanol was introduced into the plasma as vapours carried with the working gas. The process resulted in the ethanol conversion rate greater than 99%. The hydrogen production rate was up to 210 NL[H2]/h and the energy efficiency was 77 NL[H2] per kWh of absorbed microwave energy.  相似文献   

7.
Two sets of experiments were conducted to investigate the effects of adding gaseous hydrogen to the intake of compression–ignition (CI) engines fueled with 20% bio-derived/80% petroleum-derived diesel fuel (B20). A 1.3 L, 53 kW CI engine coupled to an eddy-current engine dynamometer was tested first. Data were collected on engine operating parameters, fuel consumption, concentration of total oxides of nitrogen (NOx) in the exhaust, and exhaust temperature. Eight steady-state operating points were tested with hydrogen flow rates equivalent to 0%, 5%, and 10% of the total fuel energy. In a second set of experiments, the stock gasoline engine of a 2005 Chevrolet Equinox was replaced with a 1.3 L, 66 kW CI engine, and urban drive cycles were run on a chassis dynamometer. The drive cycles were repeated with 0%, 5% and 10% of the fuel energy coming from the fumigated hydrogen. In both experiments, the addition of hydrogen did not result in discernable differences in engine efficiency. In the vehicle testing, there were no noticeable differences in drivability. There were modest reductions in NOx emissions and increases in exhaust temperature with hydrogen addition. This investigation demonstrates that fumigating relatively small amounts of hydrogen into the intake of a modern diesel engine results in only modest changes in combustion efficiency and emissions with no detrimental effects on vehicle performance or drivability. This strategy can be used to partially offset the use of petroleum-based fuels in light-duty transportation vehicles.  相似文献   

8.
The modifications performed to convert the spark ignition gasoline-fueled internal combustion engine of a Volkswagen Polo 1.4 to run with hydrogen are described. The car is representative of small vehicles widely used for both city and interurban traffic. Main changes included the inlet manifold, gas injectors, oil radiator and the electronic management unit. Injection and ignition advance timing maps were developed for lean mixtures with values of the air to hydrogen equivalence ratio (λ) between 1.6 and 3. The established engine control parameters allowed the safe operation of the hydrogen-fueled engine (H2ICE) free of knock, backfire and pre-ignition as well with reasonably low NOx emissions. The H2ICE reached best brake torque of 63 Nm at 3800 rpm and maximum brake power of 32 kW at 5000 rpm. In general, the brake thermal efficiency of the H2ICE is greater than that of gasoline-fueled engine except for the H2ICE working at very lean conditions (λ = 2.5) and high speeds (above 4000 rpm). A significant effect of the spark advance on the NOx emissions has been found, specially for relatively rich mixtures (λ < 2). Small changes of spark advance with respect to the optimum value for maximum brake torque give rise to an increase of pollutant emissions. It has been estimated that the hydrogen-fueled Volkswagen Polo could reach a maximum speed of 140 km/h with the adapted engine. Moreover, there is enough reserve of power for the vehicle moving on typical urban routes and routes with slopes up to 10%.  相似文献   

9.
The residential sector accounts for about a third of the total world energy consumption. Energy efficiency, Renewable Energy Sources and Hydrogen can play an important role in reducing the consumptions and the emissions and improving the energy security if integrated (Efficiency, Res, Hydrogen) systems are developed and experimented. The paper analyzes a real residential 100 square meters house, where energy efficiency measures and RES technologies have been applied, sizing a hydrogen system (electrolyzer, metal hydrides and fuel cell) for power backup, taking into consideration its dynamic behavior, experimentally determined. The technologies used are already available in the market and, except hydrogen technologies, sufficiently mature. Through energy efficiency technologies (insulation, absorbers, etc), the maximum electrical and thermal power needed decreases from 4.4 kWe to 1.7 kWe (annual consumption from 5000 kWh to 1200 kWh) and from 5.2 kWt to 1.6 kWt (annual consumption from 14,600 kWh to 4500 kWh) respectively. With these reduced values it has been possible to supply the consumptions entirely by small photovoltaic and solar thermal plants (less than 10 m2 each). The hydrogen backup even if remains the most expensive (versus traditional batteries and gasoline generator), satisfying all the electric needs for one day, increases the security and allows net metering. Moreover the low-pressure hydrogen storage system through metal hydrides guarantees system safety too. Finally the system modularity can also satisfy higher energy production.  相似文献   

10.
In this study, the effects of hydrogen addition on the engine performance were investigated using spark ignition engine fueled gasoline with a compression ratio of 15 at an air excess ratio (λ) of 1.8 and above. At λ = 1.8, the indicated thermal efficiency at the spark timing of the knock limit reached the maximum level under the conditions in which the hydrogen fraction was set to 4% of the heating value of the total fuel. Based on a heat balance analysis, the best hydrogen fraction was found as a balance between the improvement in the burning efficiency and the increase in heat loss. The lean limit was extended when the hydrogen fraction was increased from λ = 1.80 to λ = 2.28. The hydrogen addition achieved the maximum indicated thermal efficiency at spark timing of the knock limit was obtained at λ = 2.04, where the hydrogen fraction was 10%.  相似文献   

11.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

12.
This study conducts an experimental investigation of spark ignition (SI) engine characteristics using gasoline blended with Acetone-Butanol-Ethanol (ABE) that act as hydrogen and oxygen carriers. The number of experiments is planned and executed according to a design of experiments with full-factorial design, wherein ABE blend percentage and speed are taken as input parameters and brake thermal efficiency (BTE), emissions of carbon monoxide (CO), hydrocarbon (HC), and oxides of nitrogen (NOx) are taken as the responses. In the present study, a multi-objective optimization technique, Particle Swarm Optimization (PSO), is used to optimize spark ignition engine performance and emission parameters. The results predicted by the regression model are compared with the experimental results. PSO is used to study the Pareto front of BTE, CO, HC, and NOx, respectively. The results indicated that when the engine is run at 1500 rpm, with the fuel blend having 5.4% ethanol, a minimum value of 0.58% CO, 211 ppm of HC are obtained, giving a maximum BTE of 28%. Similarly, when the engine is run at 2264 rpm with a 5% ethanol blend, minimum NOx emission of 1029 ppm and a maximum BTE of 30% are obtained.  相似文献   

13.
There is an urgent need to provide cost-effective, clean, distributed electricity to ensure reliability for mobile network operators in Sub-Saharan Africa. A comprehensive semi-empirical MATLAB/Simulink model of a novel low-pressure, solid-hydrogen based energy storage system combined with Solar PV and battery energy storage including dynamic losses of the power conditioning equipment is built. Levenburg-Marquardt least square algorithm is used for semi-empirical parameterisation of the metal-hydride and fuel cell models, simulations are performed using experimentally obtained telecom tower load data. The results show the overall system efficiency of the energy system drop from 21.05% for a Solar/Battery system to 17.43% of the most cost-effective hybridised system, which consists of 16.2 kW Solar PV coupled to a 10kW/40 kWh Li-Ion battery, and a Regenerative Hydrogen Fuel Cell (consisting of a 10 kW PEM Electrolyser, 1,000 kWh Ti-based AB2 Solid-Hydrogen Storage Cell, and 5 kW PEM Fuel Cell). This system achieves a Levelised Cost of Electricity of 17.16 ¢/kWh compared to 73.40 ¢/kWh for a Diesel Genset, with a Net Present Value of $109,236 and an Internal Rate of Return of 15.15%.  相似文献   

14.
Energy is an essential prerequisite for economical and social growth of any country. Skyrocketing of petroleum fuel cost s in present day has led to growing interest in alternative fuels like CNG, LPG, Producer gas, Biogas in order to provide suitable substitute to diesel for a compression ignition engine. This paper discusses some experimental investigations on dual fuel operation of a 4 cylinder (turbocharged and intercooled) 62.5 kW gen-set diesel engine with hydrogen, producer gas (PG) and mixture of producer gas and hydrogen as secondary fuels. Results on brake thermal efficiency and emissions, namely, un-burnt hydrocarbon (HC), carbon monoxide (CO), and NOx are presented here. The paper also contains vital information relating to the performances of an engine at a wide range of load conditions with different gaseous fuel substitutions. When only hydrogen is used as secondary fuel, maximum increase in the brake thermal efficiency is 7% which is obtained with 20% of secondary fuel. When only producer gas is used as secondary fuel, maximum decrease in the brake thermal efficiency of 8% is obtained with 30% of secondary fuel. Compared to the neat diesel operation, proportion of un-burnt HC and CO increases, while, emission of NOx reduces in all Cases. On the other hand, when 40% of mixture of producer gas and hydrogen is used (in the ratio (60:40) as secondary fuel, brake thermal efficiency reduces marginally by 3%. Further, shortcoming of low efficiency at lower load condition in a dual fuel operation is removed when a mixture of hydrogen and producer gas is used as the secondary fuel at higher than 13% load condition. Based on the performance studied, a mixture of producer gas and hydrogen in the proportion of 60:40 may be used as a supplementary fuel for diesel conservation.  相似文献   

15.
This paper presents some experimental investigations on dual fuel operation of a 4 cylinder (turbocharged and intercooled) 62.5 kW gen-set diesel engine with hydrogen, liquefied petroleum gas (LPG) and mixture of LPG and hydrogen as secondary fuels. Results on brake thermal efficiency and emissions, namely, un-burnt hydrocarbon (HC), carbon monoxide (CO), NOx and smoke are presented here. The paper also includes vital information regarding performances of the engine at a wide range of load conditions with different gaseous fuel substitutions. When only hydrogen is used as secondary fuel, maximum enhancement in the brake thermal efficiency is 17% which is obtained with 30% of secondary fuel. When only LPG is used as secondary fuel, maximum enhancement in the brake thermal efficiency (of 6%) is obtained with 40% of secondary fuel. Compared to the pure diesel operation, proportion of un-burnt HC and CO increases, while, emission of NOx and smoke reduces in both cases. On the other hand, when 40% of mixture of LPG and hydrogen is used (in the ratio 70:30) as secondary fuel, brake thermal efficiency enhances by 27% and HC emission reduces by 68%. Further, shortcoming of low efficiency at lower load condition in a dual fuel operation is removed when a mixture of hydrogen and LPG is used as the secondary fuel at higher than 10% load condition.  相似文献   

16.
Nearly 40% of the total greenhouse gases (GHGs) are emitted from the energy consumption in buildings in Japan, which should be reduced to address global warming. A hydrogen energy utilization system with renewable energy (RE) was designed by MATLAB/Simulink simulations for realizing a zero emission building (ZEB), comprising a hydrogen-producing electrolyzer, a hydrogen storage tank, fuel cell, and battery for short-term power storage with estimated specifications of 3.0 Nm3/h, 36 Nm3, 4.2 kW, and 10 kW/17 kWh, respectively. We identified a small low-rise building (total floor area: ∼1000 m2, demand: ∼5 kW) as the planned ZEB to construct and operate a bench-scale system. A 20-kW photovoltaic (PV) system was selected as the RE source. Two hydrogen production processes (constant power of 10 kW or with excess PV power) were evaluated by simulating 48-h operations on fine and cloudy days, where the former showed higher efficiency. The results with excess power on a fine day agreed well with that of actual operation, validating our simulation models. Further, the constant case was suitable for practical application.  相似文献   

17.
Increase the equivalence ratio is a good way to improve performance of turbocharged hydrogen engines at low engine speeds. To explore the feasibility of this strategy, this paper investigated the experimental data of a 2.3 L turbocharged port fuel injection (PFI) hydrogen engine at 1500 rpm and 2000 rpm. The results showed that the power can increase from 6.8 kW to 21 kW at 2000 rpm and from 6.4 kW to 16.5 kW at 1500 rpm with increasing of the equivalence ratio. However, the equivalence ratio corroding to the biggest power is 0.8 at 1500 rpm and 0.9 at 2000 rpm because the turbocharged pressure and the volumetric efficiency at 2000 rpm are higher than the ones at 1500 rpm. The biggest BTE can reach to 30.1% at 2000 rpm and 29.3% at 1500 rpm within the range of 0.65–0.8. The covariance of indicated mean effective pressure (CoVimep) of turbocharged hydrogen is lower than 1.5% at low engine speeds and the combustion stability increased with the increase of equivalence ratio. The NOx can be reduced from 877 ppm to 0 ppm at 1500 rpm and from 1259 ppm to 17 ppm at 2000 rpm, which means the reduction efficiency of H2+TWC can exceed 99%.  相似文献   

18.
In this work, a single cylinder conventional spark ignition engine was converted to operate with hydrogen using the timed manifold fuel injection technique. A solenoid operated gas injector was used to inject hydrogen into the inlet manifold at the specified time. A dedicated electronic circuit developed for this work was used to control the injection timing and duration. The spark timing was set to minimum advance for best torque (MBT). The engine was operated at the wide-open throttle condition. For comparison of results, the same engine was also run on gasoline.The performance and emission characteristics with hydrogen and gasoline are compared. From the results, it is found that there is a reduction of about 20% in the peak power output of the engine when operating with hydrogen. The brake thermal efficiency with hydrogen is about 2% greater than that of gasoline. A lean limit equivalence ratio of about 0.3 could be attained with hydrogen as compared to 0.83 with gasoline. CO, CO2 and HC emissions were negligible with hydrogen operation. However, for hydrogen operation, NOx emission was four times higher than that of gasoline at full load power. The best ignition timing for hydrogen was much retarded when compared to gasoline. The effect of hydrogen injection pressure was also studied and no specific changes were observed. The effect of operating speed was also studied.  相似文献   

19.
Cryo-compressed hydrogen (CcH2) is a promising hydrogen storage method with merits of high density with low power consumption. Thermodynamic analysis and comparison of several CcH2 processes are conducted in this paper, under hydrogen storage conditions of 10–100 MPa at 60–100 K. Mixed-refrigerant J-T (MRJT), nitrogen/neon reverse Brayton (RBC) and hydrogen expansion are employed for cooling hydrogen, respectively. Combined CcH2 processes such as MRJT + neon-RBC are proposed to reach higher CcH2 density at lower temperatures (<80 K). It was indicated that the specific power consumptions (SPC) of MRJT processes are obviously lower than those of nitrogen/neon-RBC or hydrogen expansion processes. For a typical storage condition of 50 MPa at 80 K, MRJT CcH2 process could achieve hydrogen density of 71.59 kg m?3, above liquid hydrogen. While its SPC of 6.42 kWh kg?1 is about 40% lower than current dual-pressure Claude hydrogen liquefaction processes (10.85 kWh kg?1).  相似文献   

20.
In this research work, phase behaviour of the synthesized Schizochytrium algae biodiesel, diesel and octanol was studied with water in oil emulsions (Quaternary blend). The effects of different hydrophilic lipophilic balance were investigated by varying the ratio of Span 80 and Tween 80 (20–100%) in the quaternary blend to find an optimum HLB number. The optimum fuel blend of HLB number 12 (Span 20%: Tween 80%) showed no phase separation for 25 days. The influence of hydrogen addition in quaternary blend (QB20) and biodiesel blend (B20) under variable hydrogen flow rates (1 l/min and 2 l/min) was investigated to improve the engine parameters using dual fuel mode of operation. The dual fuel mode of operation increased the brake thermal efficiency from 29.71% for quaternary blend to 32.01% with the addition of 2 l/min hydrogen. In terms of emission, UHC was reduced by 30% and 5% for QB20 + 1 l/m H2 and QB20 + 2 l/m H2, respectively. The maximum of 11% CO emission was reduced by the hydrogen inducted QB20 + 2 l/m H2 blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号