首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To provide a multicasting service, several multicast protocols for mobile hosts (MHs) have been proposed. However, all of these protocols have faults, such as non‐optimal delivery routes and data loss when hosts move to another network, resulting in insecure multicast data transmissions. Thus, this paper presents a new reliable and efficient multicast routing protocol for mobile IP networks. The proposed protocol provides a reliable multicast transmission by compensating the data loss from the previous mobile agent when a MH moves to another network. In addition, an additional function allows for direct connection to the multicast tree according to the status of agents, thereby providing a more efficient and optimal multicast path. The performance of the proposed protocol is confirmed based on simulations under various conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In Mobile IP, the signaling traffic overhead will be too high since the new Care-of-Address (CoA) of the mobile node (MN) is registered all the way with the home agent (HA) whenever the MN has moved into a new foreign network. To complement Mobile IP in better handling local movement, several IP micro protocols have been proposed. These protocols introduce a hierarchical mobility management scheme, which divides the mobility into micro mobility and macro mobility according to whether the host's movement is intra-domain or inter-domain. Thus, the requirements on performance and flexibility are achieved, especially for frequently moving hosts. This paper introduces a routing protocol for multicast source mobility on the basis of the hierarchical mobile management scheme, which provides a unified global architecture for both uni- and multicast routing in mobile networks. The implementation of multicast services adopts an improved SSM (Source Specific Multicast) model, which combines the advantages of the existing protocols in scalability and mobility transparency. Simulation results show that the proposed protocol has better performance than the existing routing protocols for SSM source mobility.  相似文献   

3.
Supporting IP Multicast for Mobile Hosts   总被引:6,自引:0,他引:6  
  相似文献   

4.
In this paper, we propose a bandwidth-efficient multicast mechanism for heterogeneous wireless networks. We reduce the bandwidth cost of an Internet protocol (IP) multicast tree by adaptively selecting the cell and the wireless technology for each mobile host to join the multicast group. Our mechanism enables more mobile hosts to cluster together and leads to the use of fewer cells to save the scarce wireless bandwidth. Besides, the paths in the multicast tree connecting to the selected cells share more common links to save the wireline bandwidth. Our mechanism supports the dynamic group membership and offers mobility of group members. Moreover, our mechanism requires no modification to the current IP multicast routing protocols. We formulate the selection of the cell and the wireless technology for each mobile host in the heterogeneous wireless networks as an optimization problem. We use integer linear programming to model the problem and show that the problem is NP-hard. To solve the problem, we propose a distributed algorithm based on Lagrangean relaxation and a network protocol based on the algorithm. The simulation results show that our mechanism can effectively save the wireless and wireline bandwidth as compared to the traditional IP multicast.  相似文献   

5.
移动代理技术在Ad Hoc无线网络中的应用研究   总被引:1,自引:0,他引:1  
Ad Hoc无线网络是一组具有路由和转发功能的移动节点组成的一个多跳的临时性自治系统,是一种无中心的无线网络。现有的主动路由协议或者按需路由协议都不能很好地满足Ad Hoc网络的需要。介绍了Ad Hoc无线移动网络和移动代理技术。在分析了现有的2种路由协议后,提出了在按需路由协议中加入移动代理技术来增强Ad Hoc无线网络的性能。在这些结果的基础上,提出了移动代理通信协议。  相似文献   

6.
The purpose of this paper is to construct bandwidth-satisfied multicast trees for QoS applications in large-scale ad-hoc networks (MANETs). Recent routing protocols and multicast protocols in large-scale MANETs adopt two-tier infrastructures to avoid the inefficiency of the flooding. Hosts with a maximal number of neighbors are often chosen as backbone hosts (BHs) to forward packets. Most likely, these BHs will be traffic concentrations/bottlenecks of the network. In addition, since host mobility is not taken into consideration in BH selection, these two-tier schemes will suffer from more lost packets if highly mobile hosts are selected as BHs. In this paper, a new multicast protocol is proposed for partitioning large-scale MANET into two-tier infrastructures. In the proposed two-tier multicast protocol, hosts with fewer hops and longer remaining connection time to the other hosts will be selected as BHs. The objective is not only to obtain short and stable multicast routes, but also to construct a stable two-tier infrastructure with fewer lost packets. Further, previous MANET quality-of-service (QoS) routing/multicasting protocols determined bandwidth-satisfied routes for QoS applications. Some are implemented as a probing scheme, but the scheme is inefficient due to high overhead and slow response. On the contrary, the others are implemented by taking advantage of routing and link information to reduce the inefficiency. However, the latter scheme suffers from two bandwidth-violation problems. In this paper, a novel algorithm is proposed to avoid the two problems, and it is integrated with the proposed two-tier multicast protocol to construct bandwidth-satisfied multicast trees for QoS applications in large-scale MANETs. The proposed algorithm aims to achieve better network performance by minimizing the number of forwarders in a tree.  相似文献   

7.
Mobile ad hoc networks are recognized by their abilities to form, sustain, and deform networks on‐the‐fly without the need for any pre‐established and fixed infrastructures. This wireless multi‐hop technology requires adaptive networking protocols with low control overhead and low power consumption to operate efficiently. Existing research so far are mainly concerned with unicast routing for ad hoc mobile networks. There is a growing interest in supporting multicast communication in an ad hoc mobile environment. In this paper, the associativity‐based ad hoc multicast (ABAM) routing protocol is proposed. The concept of association stability is utilized during multicast tree discovery, selection, and reconfiguration. This allows routes that are long‐lived to be selected, thereby reducing the frequency of route reconstructions. ABAM employs a localized route reconstruction strategy in response to migrations by source, receiver, and tree nodes. It can repair an affected subtree via a single route reconstruction operation. ABAM is robust since the repair can be triggered by a node in the tree or by the migrated node itself. ABAM is also capable of handling multicast group dynamics when mobile hosts decide to join and leave an existing multicast group. Our simulation results reveal that under different mobility scenarios and multicast group size, ABAM has low communication overhead and yields better throughput performance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Mobile IP is the current standard for supporting macromobility of mobile hosts. However, in the case of micromobility support, there are several competing proposals. We present the design, implementation and performance evaluation of HAWAII (handoff-aware wireless access Internet infrastructure), a domain-based approach for supporting mobility. HAWAII uses specialized path setup schemes which install host-based forwarding entries in specific routers to support intra-domain micromobility. These path setup schemes deliver excellent performance by reducing mobility related disruption to user applications. Also, mobile hosts retain their network address while moving within the domain, simplifying quality-of-service (QoS) support. Furthermore, reliability is achieved through maintaining soft-state forwarding entries for the mobile hosts and leveraging fault detection mechanisms built in existing intra-domain routing protocols. HAWAII defaults to using Mobile IP for macromobility, thus providing a comprehensive solution for mobility support in wide-area wireless networks  相似文献   

10.
A new protocol, called family ACK tree (FAT), is proposed to support a reliable multicast service for mobile ad hoc networks. For each reliable multicast protocol, a recovery scheme is used to ensure end-to-end delivery of unreliable multicast packets for all group members. FAT employs a tree-based recovery mechanism that localizes ACKs and retransmissions to avoid feedback implosion. To cope with node movements, FAT constructs an ACK tree on which each node maintains reachability information to three generations of nodes on the ACK tree. When a tree is fragmented due to a departed node, the fragments are glued back to the tree using the underlying multicast routing protocol. FAT then adopts an adaptive scheme to recover missed packets that have been multicast to the group during fragmentation and are not repaired by the new reliability agent. We have conducted simulations to compare the performance of FAT with existing solutions. The results show that FAT achieves better performance for the provision of reliable service in ad hoc networks, in terms of reliability, scalability, and delivery efficiency.  相似文献   

11.
Wireless Ad Hoc Multicast Routing with Mobility Prediction   总被引:1,自引:1,他引:0  
An ad hoc wireless network is an infrastructureless network composed of mobile hosts. The primary concerns in ad hoc networks are bandwidth limitations and unpredictable topology changes. Thus, efficient utilization of routing packets and immediate recovery of route breaks are critical in routing and multicasting protocols. A multicast scheme, On-Demand Multicast Routing Protocol (ODMRP), has been recently proposed for mobile ad hoc networks. ODMRP is a reactive (on-demand) protocol that delivers packets to destination(s) on a mesh topology using scoped flooding of data. We can apply a number of enhancements to improve the performance of ODMRP. In this paper, we propose a mobility prediction scheme to help select stable routes and to perform rerouting in anticipation of topology changes. We also introduce techniques to improve transmission reliability and eliminate route acquisition latency. The impact of our improvements is evaluated via simulation.  相似文献   

12.
针对移动Ad Hoc网络QoS多播路由中普遍存在的拥塞问题,提出了一种基于协商机制的QoS多播路由协议,节点协商使用以一定QoS约束建立起的多播链路,避免过度使用多播资源引起网络拥塞,从而提高分组投递率和网络吞吐量。通过NS2仿真证明,该协议能够保证不同类型业务在网络中传输的服务质量,提高网络的利用率。  相似文献   

13.
An important problem in both wireless and wired communication networks is to be able to efficiently multicst information to a group of network sites. Multicasting reduces the transmission overhead of both wireless and wired networks and the time it takes for all the nodes in the subset to receive the information. Since transmission bandwidth is a scarce commodity especially in wireless networks, efficient and near minimum-cost multicast algorithms are particularly useful in the wireless context. In this paper, we discuss methods of establishing efficient and near minimum-cost multicast routing in communication networks. In particular, we discuss an efficient implementation of a widely used multicast routing method which can construct a multicast tree with a cost no greater than twice the cost of an optimal tree. We also present two efficient multicast tree constructions for a general version of the multicast routing problem in which a network consists of different classes of nodes, where each class can have one or more nodes of the same characteristic which is different from the characteristics of nodes from other classes. Because of their efficient running times, these multicast routing methods are particularly useful in the mobile communication environments where topology changes will imply recomputation of the multicast trees. Furthermore, the proposed efficient and near minimum-cost multicast routing methods are particularly suited to the wireless communication environments, where transmission bandwidth is more scarce than wired communication environments.Partially supported by NSF/LaSER under grant number EHR-9108765, by LEQSF grant number 94-RD-A-39, by NASA under grant number NAG 5-2842.  相似文献   

14.
One of the infrastructure-free networks is mobile ad hoc networks (MANETs) that are built with limited battery life using wireless mobile devices. This restricted battery capability in MANETs creates the necessity of considering the energy-awareness constraint in designing them. As routing protocols, the major aim of MANETs is to create the energy awareness in the network; it improves the network's lifetime through effectively utilizing the available restricted energy. Moreover, it creates some limitations like the mobility constraint, wireless link's sensitivity to environmental impacts, and restricted transmission range and residual energy of nodes that causes rapid modifications in the network topology and frequent link failure. By taking those problems, this paper plans to develop a new multipath routing protocol, where the hybrid optimization algorithm with the integration of cuckoo search optimization (CSO) and butterfly optimization algorithm (BOA) is proposed and named sensory modality-based cuckoo search butterfly optimization (SM-CSBO) for determining the optimal path between the source and destination. The main goal is to select the path with better link quality and more stable links to guarantee reliable data transmission. The multi-objective function is considered with the factors regarding distance, normalized energy, packet delivery ratio, and control overhead to develop an effective routing protocol in MANET. The proposed model of SM-CSBO algorithm has superior than 5.8%, 30.4%, 36.7%, and 39.3%, correspondingly maximized than PSO, SFO, CSO, and SFO algorithms while considering the number of nodes as 150. The simulation outcomes proved that it enhances network performance when compared with the other traditional protocols.  相似文献   

15.
The basic philosophy of personal communication services is to provide user‐to‐user, location independent communication services. The emerging group communication wireless applications, such as multipoint data dissemination and multiparty conferencing tools have made the design and development of efficient multicast techniques in mobile ad‐hoc networking environments a necessity and not just a desire. Multicast protocols in mobile ad‐hoc networks have been an area of active research for the past couple of years. This paper summarizes the activities and recent advances in this work‐in‐progress area by identifying the main issues and challenges that multicast protocols are facing in mobile ad‐hoc networking environments, and by surveying several existing multicasting protocols. This article presents a classification of the current multicast protocols, discusses the functionality of the individual existing protocols, and provides a qualitative comparison of their characteristics according to several distinct features and performance parameters. Furthermore, since many of the additional issues and constraints associated with the mobile ad‐hoc networks are due, to a large extent, to the attribute of user mobility, we also present an overview of research and development efforts in the area of group mobility modeling in mobile ad‐hoc networks. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
3-D aerial and underwater sensor networks have found various applications in natural habitat monitoring, weather/earthquake forecast, terrorist intrusion detection, and homeland security. The resource-constrained and dynamic nature of such networks has made the stateless routing protocol with only local information a preferable choice. However, most of the existing routing protocols require sensor nodes to either proactively maintain the state information or flood the network from time to time. The existing stateless geometric routing protocols either fail to work in 3-D environments or have tendency to produce lengthy paths. In this paper, we propose a novel routing protocol, namely Geometric STAteless Routing (G-STAR) for 3-D networks. The main idea of G-STAR is to distributively build a location-based tree and find a path dynamically. G-STAR not only generalizes the notion of geographic routing from two modes to one mode, but also guarantees packet delivery even when the location information of some nodes is either inaccurate or simply unavailable regardless of the uses of virtual coordinates. In addition, we develop a light-weight path pruning algorithm, namely Branch Pruning (BP), that can be combined with G-STAR to enhance the routing performance with very little overhead. The extensive simulation results by ns-2 have shown that the proposed routing protocols perform significantly better than the existing 3-D geometric routing protocols in terms of delivery rate with competitive hop stretch. We conclude that the proposed protocols serve as a strong candidate for future high-dimensional sensor networks.  相似文献   

17.
With the increasing demand for real-time services in next generation wireless networks, quality-of-service (QoS) based routing offers significant challenges. Multimedia applications, such as video conferencing or real-time streaming of stock quotes, require strict QoS guarantee on bandwidth and delay parameters while communicating among multiple hosts. These applications give rise to the need for efficient multicast routing protocols, which will be able to determine multicast routes that satisfy different QoS constraints simultaneously. However, designing such protocols for optimizing multiple objectives, is computationally intractable. Precisely, discovering optimal multicast routes is an NP-hard problem when the network state information is inaccurate – a common scenario in wireless networks. Based on the multi-objective genetic algorithm (MOGA), in this paper we propose a QoS-based mobile multicast routing protocol (QM2RP) that determines near-optimal routes on demand. Our protocol attempts to optimize multiple QoS parameters, namely end-to-end delay, bandwidth requirements, and residual bandwidth utilization. Furthermore, it is fast and efficient in tackling dynamic multicast group membership information arising due to user mobility in wireless cellular networks. Simulation results demonstrate that the proposed protocol is capable of discovering a set of QoS-based, near-optimal multicast routes within a few iterations, even with imprecise network information. Among these routes one can choose the best possible one depending on the specified QoS requirements. The protocol is also scalable and yields lower multicast call-blocking rates for dynamic multicast group size in large networks.  相似文献   

18.
Wireless ad hoc and sensor networks are emerging with advances in electronic device technology, wireless communications and mobile computing with flexible and adaptable features. Routing protocols act as an interface between the lower and higher layers of the network protocol stack. Depending on the size of target nodes, routing techniques are classified into unicast, multicast and broadcast protocols. In this article, we give analysis and performance evaluation of tree‐based multicast routing in wireless sensor networks with varying network metrics. Geographic multicast routing (GMR) and its variations are used extensively in sensor networks. Multicast routing protocols considered in the analytical model are GMR, distributed GMR, demand scalable GMR, hierarchical GMR, destination clustering GMR and sink‐initiated GMR. Simulations are given with comparative analysis based on varying network metrics such as multicast group size, number of sink nodes, average multicast latency, number of clusters, packet delivery ratio, energy cost ratio and link failure rate. Analytical results indicate that wireless sensor network multicast routing protocols operate on the node structure (such as hierarchical, clustered, distributed, dense and sparse networks) and application specific parameters. Simulations indicate that hierarchical GMR is used for generic multicast applications and that destination clustering GMR and demand scalable GMR are used for distributed multicast applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a simple network layer protocol that integrates routing and connectionless transfer of data in a wireless environment. The protocol is specifically geared towards supporting transfer of signalling in mobile networks based on a rooted tree topology. Exploiting the special characteristics of such a topology allows the specification of a very simple and processing efficient routing function. Using the routing function, a connectionless message transport service is implemented. The connectionless transport service is comparable to that of typical network layer protocols of existing data networks. The protocol has originally been specified to carry signalling messages in the control plane of mobile, cellular systems but has the potential to be used also in other environments.  相似文献   

20.
Multicast communication of mobile ad hoc networks is vulnerable to internal attacks due to its routing structure and high scalability of its participants. Though existing intrusion detection systems (IDSs) act smartly to defend against attack strategies, adversaries also accordingly update their attacking plans intelligently so as to intervene in successful defending schemes. In our work, we present a novel indirect internal stealthy attack on a tree‐based multicast routing protocol. Such an indirect stealthy attack intelligently makes neighbor nodes drop their routing‐layer unicast control packets instead of processing or forwarding them. The adversary targets the collision avoidance mechanism of the Medium Access Control (MAC) protocol to indirectly affect the routing layer process. Simulation results show the success of this attacking strategy over the existing “stealthy attack in wireless ad hoc networks: detection and countermeasure (SADEC)” detection system. We design a cross‐layer automata‐based stealthy attack on multicast routing protocols (SAMRP) attacker detection system to identify and isolate the proposed attacker. NS‐2 simulation and analytical results show the efficient performance, against an indirect internal stealthy attack, of SAMRP over the existing SADEC and BLM attacker detection systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号