首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
This paper presents a new robust boundary element method, based on a source point isolation technique, for solving general anisotropic potential and elastic problems with varying coefficients. Different types of fundamental solutions can be used to derive the basic integral equations for specific anisotropic problems, although fundamental solutions corresponding to isotropic problems are recommended and adopted in the paper. The use of isotropic fundamental solutions for anisotropic and/or varying material property problems results in domain integrals in the basic integral equations. The radial integration method is employed to transform the domain integrals into boundary integrals, resulting in a pure boundary element analysis algorithm that does not need any internal cells. Numerical examples for 2D and 3D potential and elastic problems are given to demonstrate the correctness and robustness of the proposed method.  相似文献   

2.
A new boundary element method is developed for solving thin-body thermoelastic problems in this paper. Firstly, the novel regularized boundary integral equations (BIEs) containing indirect unknowns are proposed to cancel the singularity of fundamental solutions. Secondly, a general nonlinear transformation available for high-order geometry elements is introduced in order to remove or damp out the near singularity of fundamental solutions, which is crucial for accurate solutions of thin-body problems. Finally, the domain integrals arising in both displacement and its derivative integral equations, caused by the thermal loads, are regularized using a semi-analytical technique. Six benchmark examples are examined. Results indicate that the proposed method is accurate, convergent and computationally efficient. The proposed method is a competitive alternative to existing methods for solving thin-walled thermoelastic problems.  相似文献   

3.
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. In this paper, the SBFEM is firstly extended to solve electrostatic problems. Two new SBFE coordination systems are introduced. Based on Laplace equation of electrostatic field, the derivations (based on a new variational principle formulation) and solutions of SBFEM equations for both bounded domain and unbounded domain problems are expressed in details, the solution for the inclusion of prescribed potential along the side-faces of bounded domain is also presented in details, then the total charges on the side-faces can be semi-analytically solved, and a particular solution for the potential field in unbounded domain satisfying the constant external field is solved. The accuracy and efficiency of the method are illustrated by numerical examples with complicated field domains, potential singularities, inhomogeneous media and open boundaries. In comparison with analytic solution method and other numerical methods, the results show that the present method has strong ability to resolve singularity problems analytically by choosing the scaling centre at the singular point, has the inherent advantage of solving the open boundary problems without truncation boundary condition, has efficient application to the problems with inhomogeneous media by placing the scaling centre in the bi-material interfaces, and produces more accurate solution than conventional numerical methods with far less number of degrees of freedom. The method in electromagnetic field calculation can have broad application prospects.  相似文献   

4.
边界元法一般采用控制方程的基本解作为权函数,这往往能在控制方程为齐次时可避免域积分。但当问题复杂,基本解不能求得时,此法便产生了困难。虽有人也曾偶尔用非基本解函数作为权函数,但本文将系统地探讨函娄与边界积分方程的关系,所涉及的各类定解问题都用Laplace基本解和kelvin基本解作为权函数,并提出边界点公式和内点公式联立求解的方法。这不但避免了求基本解的困难,同时也为编制能求解多种问题的多功能电算程序提供了方便,使程序的长度缩短了,编程和调试的难度也降低了。  相似文献   

5.
In this paper, an efficient Kansa-type method of fundamental solutions (MFS-K) is extended to the solution of two-dimensional time fractional sub-diffusion equations. To solve initial boundary value problems for these equations, the time dependence is removed by time differencing, which converts the original problems into a sequence of boundary value problems for inhomogeneous Helmholtz-type equations. The solution of this type of elliptic boundary value problems can be approximated by fundamental solutions of the Helmholtz operator with different test frequencies. Numerical results are presented for several examples with regular and irregular geometries. The numerical verification shows that the proposed numerical scheme is accurate and computationally efficient for solving two-dimensional fractional sub-diffusion equations.  相似文献   

6.
The scaled boundary radial point interpolation method (SBRPIM), a new semi‐analytical technique, is introduced and applied to the analysis of the stress–strain problems. The proposed method combines the advantages of the scaled boundary finite element method and the boundary radial point interpolation method. In this method, no mesh is required, nodes are scattered only on the boundary of the domain, no fundamental solution is required, and as the shape functions constructed based on the radial point interpolation method possess the Kronecker delta function property, the boundary conditions of problems can be imposed accurately without additional efforts. The main ideas of the SBRPIM are introducing a new method based on boundary scattered nodes without the need to element connectivity information, satisfying Kronecker delta function property, and being capable to handle singular problems. The equations of the SBRPIM in stress–strain fields are outlined in this paper. Several benchmark examples of 2‐D elastostatic are analyzed to validate the accuracy and efficiency of the proposed method. It is found that the SBRPIM is very easy to implement and the obtained results of the proposed method show a very good agreement with the analytical solution. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper the diffusion equation is solved in two-dimensional geometry by the dual reciprocity boundary element method (DRBEM). It is structured by fully implicit discretization over time and by weighting with the fundamental solution of the Laplace equation. The resulting domain integral of the diffusive term is transformed into two boundary integrals by using Green's second identity, and the domain integral of the transience term is converted into a finite series of boundary integrals by using dual reciprocity interpolation based on scaled augmented thin plate spline global approximation functions. Straight line geometry and constant field shape functions for boundary discretization are employed. The described procedure results in systems of equations with fully populated unsymmetric matrices. In the case of solving large problems, the solution of these systems by direct methods may be very time consuming. The present study investigates the possibility of using iterative methods for solving these systems of equations. It was demonstrated that Krylov-type methods like CGS and GMRES with simple Jacobi preconditioning appeared to be efficient and robust with respect to the problem size and time step magnitude. This paper can be considered as a logical starting point for research of iterative solutions to DRBEM systems of equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Traditional numerical techniques such as FEM and BEM have been successfully applied to the solutions of Biot's consolidation problems. However, these techniques confront some difficulties in dealing with moving boundaries. In addition, pre-designing node connectivity or element is not an easy task. Recently, developed meshless methods may overcome these difficulties. In this paper, a meshless model, based on the local Petrov–Galerkin approach with Heaviside step function as well as radial basis functions, is developed and implemented for the numerical solution of plane strain poroelastic problems. Although the proposed method is based on local boundary integral equation, it does not require any fundamental solution, thus avoiding the singularity integral. It also has no domain integral over local domain, thus largely reducing the computational cost in formulation of system stiffness. This is a truly meshless method. The solution accuracy and the code performance are evaluated through one-dimensional and two-dimensional consolidation problems. Numerical examples indicate that this meshless method is suitable for either regular or irregular node distributions with little loss of accuracy, thus being a promising numerical technique for poroelastic problems.  相似文献   

9.
A comprehensive technique is described for performing the simulation of the solidification of foundry castings. A finite element method (FEM) mesh is produced for the pattern of the part, using geometric modeling techniques. Results are presented to demonstrate selection rules for the mesh size. The size of the heat transfer problem is reduced by replacing the FEM mesh in the mold material by appropriate boundary conditions on the surface of the casting. The boundary conditions are found automatically by a program which relates local surface curvature on the part to a pre-calculated library of solutions. Methods for ensuring that all of the latent heat of fusion is included are presented, and comparisons are made between different solution methods.  相似文献   

10.
In this paper, a new procedure for solving 3-D dynamic problems of unbounded foundations in the frequency domain by using BEM is studied. For simulations of wave propagations due to far field effects, a type of infinite boundary element (IBEM) is presented for modelling a 3-D regular or irregular half space. The wave type considered could be compressional, shear or a combination of the two. Through the analysis of the asymptotic behaviour of 3-D fundamental solutions for elasto dynamics, a rather feasible technique for obtaining singular integral coefficients for dynamic problems has been developed. Through the analysis of the dynamic response for a 3-D square foundation under a uniform load distribution, excellent accuracy has been achieved in agreement with previous numerical solutions. Another example–analysis of the dynamic compliance of a rigid square plate on a half space–has also shown very good results. The development of this infinite boundary element provides a powerful tool for dealing with 3-D structure foundation interaction or wave propagation problems for irregular foundations such as arch dam canyons.  相似文献   

11.
In this paper, we present a goal-oriented a posteriori error estimation technique for the pointwise error of finite element approximations using fundamental solutions. The approach is based on an integral representation of the pointwise quantity of interest using the corresponding Green's function, which is decomposed into an unknown regular part and a fundamental solution. Since only the regular part must be approximated with finite elements, very accurate results are obtained. The approach also allows the derivation of error bounds for the pointwise quantity, which are expressed in terms of the primal problem and the regular part problem. The presented technique is applied to linear elastic test problems in two-dimensions, but it can be applied to any linear problem for which fundamental solutions exist.  相似文献   

12.
比例边界有限元法作为一种高精度的半解析数值求解方法,特别适合于求解无限域与应力奇异性等问题,多边形比例边界单元在模拟裂纹扩展过程、处理局部网格重剖分等方面相较于有限单元法具有明显优势。目前,比例边界有限元法更多关注的是线弹性问题的求解,而非线性比例边界单元的研究则处于起步阶段。该文将高效的隔离非线性有限元法用于比例边界单元的非线性分析,提出了一种高效的隔离非线性比例边界有限元法。该方法认为每个边界线单元覆盖的区域为相互独立的扇形子单元,其形函数以及应变-位移矩阵可通过半解析的弹性解获得;每个扇形区的非线性应变场通过设置非线性应变插值点来表达,引入非线性本构关系即可实现多边形比例边界单元高效非线性分析。多边形比例边界单元的刚度通过集成每个扇形子单元的刚度获取,扇形子单元的刚度可采用高斯积分方案进行求解,其精度保持不变。由于引入了较多的非线性应变插值点,舒尔补矩阵维数较大,该文采用Woodbury近似法对隔离非线性比例边界单元的控制方程进行求解。该方法对大规模非线性问题的计算具有较高的计算效率,数值算例验证了算法的正确性以及高效性,将该方法进行推广,对实际工程分析具有重要意义。  相似文献   

13.
This study develops a frequency-domain method for modelling general transient linear-elastic dynamic problems using the semi-analytical scaled boundary finite element method (SBFEM). This approach first uses the newly-developed analytical Frobenius solution to the governing equilibrium equation system in the frequency domain to calculate complex frequency-response functions (CFRFs). This is followed by a fast Fourier transform (FFT) of the transient load and a subsequent inverse FFT of the CFRFs to obtain time histories of structural responses. A set of wave propagation and structural dynamics problems, subjected to various load forms such as Heaviside step load, triangular blast load and ramped wind load, are modelled using the new approach. Due to the semi-analytical nature of the SBFEM, each problem is successfully modelled using a very small number of degrees of freedom. The numerical results agree very well with the analytical solutions and the results from detailed finite element analyses.  相似文献   

14.
The scaled boundary finite‐element method (a novel semi‐analytical method for solving linear partial differential equations) involves the solution of a quadratic eigenproblem, the computational expense of which rises rapidly as the number of degrees of freedom increases. Consequently, it is desirable to use the minimum number of degrees of freedom necessary to achieve the accuracy desired. Stress recovery and error estimation techniques for the method have recently been developed. This paper describes an h‐hierarchical adaptive procedure for the scaled boundary finite‐element method. To allow full advantage to be taken of the ability of the scaled boundary finite‐element method to model stress singularities at the scaling centre, and to avoid discretization of certain adjacent segments of the boundary, a sub‐structuring technique is used. The effectiveness of the procedure is demonstrated through a set of examples. The procedure is compared with a similar h‐hierarchical finite element procedure. Since the error estimators in both cases evaluate the energy norm of the stress error, the computational cost of solutions of similar overall accuracy can be compared directly. The examples include the first reported direct comparison of the computational efficiency of the scaled boundary finite‐element method and the finite element method. The scaled boundary finite‐element method is found to reduce the computational effort considerably. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a new boundary element method (BEM) for linear elastic fracture mechanics in three-dimensional multilayered solids. The BEM is based on a generalized Kelvin solution. The generalized Kelvin solution is the fundamental singular solution for a multilayered elastic solid subject to point concentrated body-forces. For solving three-dimensional elastic crack problems in a finite region, a multi-region method is also employed in the present BEM. For crack problems in an infinite space, a large finite body is used to approximate the infinite body. In addition, eight-node traction-singular boundary elements are used in representing the displacements and tractions in the vicinity of a crack front. The incorporation of the generalized Kelvin solution into the boundary integral formulation has the advantages in elimination of the element discretization at the interfaces of different elastic layers. Three numerical examples are presented to illustrate the proposed method for the calculation of stress intensity factors for cracks in layered solids. The results obtained using the proposed method are well compared with the existing results available in the relevant literature.  相似文献   

16.
The boundary element method has been applied with success to linear elastic fracture mechanicproblems, involving static and dynamic cases. In order to solve body force problems (e.g., gravitational forcesand transient problems with velocities and accelerations), Nardini and Brebbia presented, in 1982, the dualreciprocity formulation. Originally with the intention of solving transient problems using fundamental solutionsof the static formulation, the procedure was found to be very efficient in the solution of body force problemsas well. Also, a Green’s function corresponding to an embedded crack within the infinite medium can beintroduced into the boundary element formulation as the fundamental solution. This yields accurate means ofcalculating only the external boundary unknown displacements and tractions and, in a post-processing scheme,determining the crack opening displacements. This paper introduces an approach that involves the numericalGreen’s function procedure, of Telles and coworkers, and the dual reciprocity formulation. It compares beamsolutions with the simulated effect of the total weight applied as a concentrated boundary force, the actualself-weight as a body force and a frequency- and time-dependent transient Heaviside load applied to a platewith a central crack.  相似文献   

17.
This paper focuses on a parameter identification algorithm of two-dimensional orthotropic material bodies. The identification inverse problem is formulated as the minimization of an objective function representing differences between the measured displacements and those calculated by using the scaled boundary finite element method (SBFEM). In this novel semi-analytical method, only the boundary is discretized yielding a large reduction of solution unknowns, but no fundamental solution is required. As sufficiently accurate solutions of direct problems are obtained from the SBFEM, the sensitivity coefficients can be calculated conveniently by the finite difference method. The Levenberg–Marquardt method is employed to solve the nonlinear least squares problem attained from the parameter identification problem. Numerical examples are presented at the end to demonstrate the accuracy and efficiency of the proposed technique.  相似文献   

18.
 Like the finite element method (FEM), the symmetric Galerkin boundary element method (SGBEM) can produce symmetric system matrices. While widely developed for two dimensional problems, the 3D-applications of the SGBEM are very rare. This paper deals with the regularization of the singular integrals in the case of 3D elastostatic problems. It is shown that the integration formulas can be extended to curved elements. In contrast to other techniques, the Kelvin fundamental solutions are used with no need to introduce the new kernel functions. The accuracy of the developed integration formulas is verified on a problem with known analytical solution. Received 6 November 2000  相似文献   

19.
The Taylor series multipole boundary element method (TSMBEM) improves the efficiency of boundary element method (BEM) by reducing the required operations and computer memory. However, the precision of TSMBEM is sacrificed comparing to the conventional BEMs. To quantify the accuracy of TSMBEM in solving 3D elasticity problems, error analysis is performed. A novel near-field preconditioning technique is presented for fast multipole-BEM based on the degressive regularity of fundamental solutions. The correctness and effectiveness of error estimate formula and near-field preconditioning technique is demonstrated by numerical examples.  相似文献   

20.
In this paper, we replace the asymptotic enrichments around the crack tip in the extended finite element method (XFEM) with the semi‐analytical solution obtained by the scaled boundary finite element method (SBFEM). The proposed method does not require special numerical integration technique to compute the stiffness matrix, and it improves the capability of the XFEM to model cracks in homogeneous and/or heterogeneous materials without a priori knowledge of the asymptotic solutions. A Heaviside enrichment is used to represent the jump across the discontinuity surface. We call the method as the extended SBFEM. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics show that the proposed method yields accurate results with improved condition number. A simple code is annexed to compute the terms in the stiffness matrix, which can easily be integrated in any existing FEM/XFEM code. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号