首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 307 毫秒
1.
利用注蒸汽的方法开采稠油时,为了提高注蒸汽的效益,希望尽量减少注蒸汽管线及井筒中蒸汽的压力降和热损失。因此根据注入蒸汽的流量、压力和干度确定注汽井井底的蒸汽参数,或根据井底油层条件选择合理的注汽参数是一项重要工作。本文根据两相流动和传热的综合模型,考虑了蒸汽在注汽管线和井筒中的流动状态及井筒中的不稳定的传热过程,计算注蒸汽时地面管线及井筒中蒸汽的压力降、干度变化及热量损失,编制了计算程序,并有计算实例分析。计算中还考虑了井底油层静压对注汽压力的约束作用。并可根据油井条件,通过计算,选择合理的注汽参数。  相似文献   

2.
氮气辅助蒸汽驱开采稠油油藏能够有效提高蒸汽的热能利用率,但由于氮气的存在导致常规计算蒸汽驱井筒沿程热损失和压降模型已经不再适用。针对氮气与蒸汽在井筒中的二元两相流动,在充分考虑井筒传热和流动理论的基础上,建立了氮气-蒸汽混注过程中井筒沿程热损失和压降的计算模型,得到了氮气-蒸汽混注过程中井筒沿程参数的变化,并分析了井口氮气注入流量和井口蒸汽干度对井底总压力、蒸气分压和干度等相关参数的影响。计算结果表明:随着注入井深的增加,氮气-蒸汽混合物总压力和蒸汽分压增加,混合物温度升高,累积热损失增大。井口氮气注入流量的增加能够减小蒸汽分压,提高井底蒸汽干度,从而减小井筒累积热损失。说明氮气能够有效提高注入蒸汽的热能利用率,该模型能够准确计算氮气参与下的蒸汽热损失。  相似文献   

3.
稠油热采井井筒内蒸汽参数计算   总被引:2,自引:0,他引:2  
注蒸汽热采是目前开采稠油的主要方法。注汽过程中,蒸汽沿井筒方向的压力、温度、干度以及热损失之间相互影响,通过给出的井筒综合传热数学模型,能够较准确的模拟井筒内蒸汽参数的变化。模型中考虑了蒸汽物性参数随压力和温度的变化,其中,井筒汽液两相垂直管流压力降计算采用经典的Beggs-Brill方法;计算井筒总传热系数时考虑了接箍热损失的影响,并对井筒总传热系数进行了修正。通过油田实例的计算对比,验证了模型的可靠性。  相似文献   

4.
针对注汽井筒的传热特点,建立了注汽井传热过程中地层热阻的恒壁温计算模型,并与恒热源模型进行了对比,结果表明,前者更能反映注汽过程的散热特性.结合注汽井井筒散热理论模型,计算了蒸汽沿井筒的温度、压力、干度和热损失沿程分布,并进行了参数敏感性分析,与现场测试结果的对比说明,考虑地层热阻的综合传热模型可以较好地对注汽井井筒进行热力分析.  相似文献   

5.
采用地层热阻新模型进行注汽井井筒热力分析   总被引:1,自引:0,他引:1  
针对注汽井筒的传热特点,建立了注汽井传热过程中地层热阻的恒壁温计算模型,并与恒热源模型进行了对比,结果表明,前者更能反映注汽过程的散热特性。结合注汽井井筒散热理论模型,计算了蒸汽沿井筒的温度、压力、干度和热损失沿程分布,并进行了参数敏感性分析,与现场测试结果的对比说明,考虑地层热阻的综合传热模型可以较好地对注汽井井筒进行热力分析。  相似文献   

6.
针对多相流动下稠油热采井注汽过程中耦合机理不明确,开采参数优化不完善的问题,基于气液两相流理论,考虑井筒倾斜影响,结合井筒液膜分布特征,建立稠油热采井全井段气液两相热流耦合模型,分析不同参数对井筒内湿蒸汽热力学性质的影响规律。研究表明:井筒倾斜角小于45 °时,湿蒸汽热力学性质受井筒倾斜程度影响较显著;井筒倾斜角大于45 °后,对湿蒸汽热力学性质的影响逐渐减弱;蒸汽压力、蒸汽温度、蒸汽干度等随井深增大而发生变化,水平段的变化更显著。对辽河油田3口热采井注汽量等参数进行优化,在预期的油井产量条件下,注汽量分别降低了15.3%、16.6%、14.7%,显著降低了热采水平井的开发成本。该研究对指导井口注汽参数优化,提高注汽热效率具有重要指导意义。  相似文献   

7.
注蒸汽开发稠油油藏中的井筒热损失分析   总被引:1,自引:1,他引:0  
注蒸汽开发稠油油藏过程中,为了预测沿井深和随时间变化的蒸汽温度分布、干度分布和蒸汽压力分布、套管和地层温度分布,以及焖井、开井生产过程中温度、压力的变化,首先必须建立注入过程中的井筒-地层温度分布模型。而这一模型建立的基础是井筒热损失的计算分析。文中应用热传递基本理论,通过井筒内能量守恒定理建立起注蒸汽井井筒热损失计算预测模型,重点分析了井筒总传热系数Uto和注汽速度对井筒热损失和井底蒸汽干度的影响,对注蒸汽开发稠油油藏有一定的指导作用。  相似文献   

8.
陈立达  栾启铭 《石化技术》2022,(3):96-97,100
在稠油热采中,井口蒸汽干度是一个十分重要的参数,提高管线出口处蒸汽干度是提高稠油热采经济效益的核心问题.本文基于稠油注汽系统设计规范中管线蒸汽干度计算方法,分析不同参数对其出口蒸汽干度的影响.  相似文献   

9.
井筒中蒸汽-氮气混合物流动与换热规律   总被引:1,自引:1,他引:0  
林日亿  李兆敏 《石油学报》2010,31(3):506-510
针对注蒸汽开采稠油过程中出现的蒸汽超覆、窜流及热损失等问题,进行了氮气辅助蒸汽注入技术研究,建立了蒸汽-氮气混合物在井筒中流动和换热的数学模型。利用该模型研究了混合物在井筒中的流动与换热规律,分析了井口氮气注入流量和井口蒸汽干度对蒸汽-氮气混合物在井筒中的流动压力、温度、干度的影响。结果表明,随着混合物的注入,混合物压力及蒸汽分压不断增加,混合物温度不断升高,气体干度和蒸汽干度不断下降,向地层的散热由靠水蒸气凝结释放汽化潜热提供。井口注入氮气流量增大,有利于提高井底的蒸汽和气相干度,减小井筒热损失。现场应用表明,注入蒸汽-氮气混合物能提高热能利用率,增大油气比。  相似文献   

10.
利用热力学、流体力学原理,建立了热采井注汽过程井筒沿程蒸汽干度分布计算模型。根据能量平衡原理,分析研究了蒸汽参数与压力损失、井筒传热量之间的关系。编制了相应的计算程序,并以实际注蒸汽井数据为基础验证了程序计算方法及蒸汽参数变化规律的正确性.  相似文献   

11.
多元热流体注入井筒的热力计算   总被引:1,自引:0,他引:1  
针对海上油田平台空间小、操作成本高、常规热采实施难度大等问题,进行了多元热流体吞吐技术的研究。以井筒两相流动和传热理论为基础,建立了多元热流体注入井筒过程中流动和换热的数学模型。利用该模型研究了多元热流体在井筒中的流动和换热规律,分析了注入压力、温度对井筒压力、温度、干度的影响和不同比例组成多元热流体对井筒温度的影响。结果表明:在注入过程中,井筒压力取决于重力压降与摩阻压降的大小,井筒温度的升降取决于饱和蒸汽分压的升降;在其他条件不变的情况下,适当降低井口注入压力有利于提高井底温度和井口出口干度;注入的氮气和二氧化碳总量不变,氮气比例增大,井底温度下降变快。  相似文献   

12.
为了优化海上稠油油藏"非凝结气与过热蒸汽"(简称为"混合汽/气")混注过程中的注汽参数,根据质量、能量和动量守恒方程,建立了井筒内非等温流动数学模型,结合海水中传热模型、地层内瞬态导热模型,建立了完整的海上稠油油藏注混合汽/气井筒传热模型,利用有限差分法和迭代法计算得到井筒内的压力和温度分布。研究结果表明:海水流动能明显增加井筒热损失,降低混合汽/气的温度;随着非凝结气含量增加,混合汽/气的温度和过热度均下降;随着注汽压力增加,过热度不断下降。海上稠油油藏注混合汽/气井筒传热模型为优选注汽参数和分析海水对井筒热损失的影响提供了理论依据。   相似文献   

13.
为了解同心双管注多元热流体的传热特征,获得最优的井底蒸汽参数,基于实际气体R-K-S状态方程和质量、能量与动量守恒方程,结合经典地层内瞬态传热模型,建立了同心双管注多元热流体井筒传热数学模型。在验证模型的基础上,分析了井筒内混合汽/气典型传热特征,近井口处无接箍油管和内油管环空之间的温差较小,会导致流体热物性参数剧烈变化,但温度梯度快速趋于一致。应用该模型对非凝结气含量和注汽温度进行了优化计算,结果表明,非凝结气含量增大,井底过热度减小;随着无接箍油管注汽温度升高,井底过热度增加。研究结果表明,注汽参数对井筒内热参数分布有明显影响,现场作业时要根据井眼实际情况优选注汽参数。   相似文献   

14.
杨立龙 《特种油气藏》2021,28(3):151-156
针对目前中深层超稠油油藏SAGD(蒸汽辅助重力泄油)开发中热能消耗大、热利用率低的问题,参考辽河油田杜84块馆陶油层SAGD实际生产数据,对SAGD开发各阶段热损失原因和影响因素进行了分析,计算了开发全过程各阶段的热损失,并提出了热效率提升对策。结果表明:SAGD开发全过程的热损失包含注汽锅炉热损失、汽水分离器热损失、注汽管线热损失、注汽井筒热损失、地层吸热、生产井筒热损失6个部分;热损失主要集中在注汽锅炉、汽水分离器、注汽管线及注汽井筒,热损失比例达到了34.8%,地层吸热比例只有36.0%。针对主要热损失阶段提出了提高热效率的对策,现场实施后综合热效率提高了17.0个百分点。该研究可为改善中深层超稠油油藏SAGD开发效果及经济性提供技术参考。  相似文献   

15.
为探讨高速蒸汽驱开采效果优于低速蒸汽驱的原因,将地面、井筒和地层当作一个系统来考虑,首先计算了不同注汽速度下的地面热损失,并以得到的井口参数为基础计算了不同注汽速度下采用光油管或隔热油管注汽时的井筒热损失;然后计算了不同注汽速度下不同厚度油层的地层热损失,从而得到了蒸汽驱全系统热损失与注汽速度关系曲线。结果表明,注汽速度是影响蒸汽驱全系统热损失大小的主要原因:注汽速度小于48m^3/d,蒸汽驱全系  相似文献   

16.
针对寄生管充气钻井技术的特征,选用Hasan多相流计算模型,确定了井筒环空的流型和压降计算方法,给出了编程求解的计算流程。利用新疆某充气欠平衡井的数据进行计算,对井筒压力、流型变化、含气体积分数随注气量、钻井液排量、井口回压的变化规律进行了研究。在寄生管充气钻井的过程中,井筒环空压力随注气量的增大而减小,随钻井液排量的增大而增大,随井口回压的增大而增大。井筒环空中的含气体积分数随注气量的增大而增大,随钻井液排量的增大而减小,随井口回压的增大而减小。井筒环空中的流型转换点随注气量的增大而下移,随钻井液排量的增大而上移,随井口回压的增大而上移。  相似文献   

17.
多点注汽水平井井筒出流规律数值模拟   总被引:8,自引:6,他引:2  
基于多点注汽水平井管柱结构,考虑注入蒸汽在水平井筒内的变质量流特性及注汽阀节流压差的影响,建立了多点注汽水平井井筒与储层耦合数学模型,并采用迭代方法对其进行了求解;以此为基础,系统研究了多点注汽水平井井筒出流规律。结果表明:多点注汽水平井注汽过程中,水平段油管内压力、温度和蒸汽干度从水平井跟端到趾端逐渐降低,但压力和温度降低幅度并不显著,蒸汽干度降低幅度较为明显;蒸汽注入量与注汽阀节流压差沿水平段均呈不对称的"U"型分布,且随着时间的增加,蒸汽注入量沿水平井段的不均匀性越来越严重,蒸汽注入量不均匀系数越来越大;通过调整注汽阀沿水平井段泄流面积可以在一定程度上减缓蒸汽沿水平井筒的不均匀注入。  相似文献   

18.
注汽井油套管环空氮气隔热井筒传热物理模型设计   总被引:1,自引:0,他引:1  
为了搞清稠油注汽热采井油套管环空氮气隔热技术的影响因素和操作条件,实现注汽热采井油套管环空氮气隔热井筒传热技术的室内物理模拟,依据井筒传热原理,遵循相似准则,按技术指标比例建模,在室内建立了同心油管氮气隔热井筒传热、光油管氮气隔热井筒传热物理模型各一套。通过利用数值模拟技术对井筒径向传热温场进行了验证.验证结果证明了所建模型的科学性和实用性。  相似文献   

19.
A novel model for dynamic temperature distribution in heavy oil reservoirs is derived from the principle of energy conservation.A difference equation of the model is firstly separated into radial and axial difference equations and then integrated.Taking into account the coupling of temperature and pressure in the reservoir and wellbore,models for calculating distributions of the reservoir temperature,reservoir pressure,and water saturation are also developed.The steam injected into the wellbore has a more significant effect on reservoir pressure than on reservoir temperature.Calculation results indicate that the reservoir temperature and pressure decrease exponentially with increasing distance from the horizontal wellbore.The radial variation range of the pressure field induced by steam is twice as wide as that of the temperature field,and both variation ranges decrease from the wellbore heel to the toe.Variation of water saturation induced by steam is similar to the temperature and pressure fields.The radial variation ranges of the reservoir temperature and pressure increase with steam injection time,but rate of increase diminishes gradually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号