首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmission electron diffraction (TED) and transmission electron microscope (TEM) studies have been made of organometallic vapor phase epitaxial GaxIn1−xP layers (x ≈ 0.5) grown at temperatures in the range 570–690°C to investigate ordering and ordered domain structures. TED and TEM examination shows that the size and morphology of ordered domains depend on the growth temperature. The ordered domains change from a fine rod-like shape to a plate-like shape as the growth temperature increases. The domains are of width 0.6∼2 nm and of length 1∼10 nm. Characteristic diffuse features observed in TED patterns are found to depend on the growth temperature. Extensive computer simulations show a direct correlation between the ordered domain structures and such diffuse features. A possible model is suggested to describe the temperature dependence of the ordered domain structure.  相似文献   

2.
Detailed transmission electron microscopy (TEM) and transmission electron diffraction (TED) examination has been made of metalorganic molecular beam epitaxial GaAsN layers grown on (001) GaAs substrates. TEM results show that lateral composition modulation occurs in the GaAs1−xNx layer (x 6.75%). It is shown that increasing N composition and Se (dopant) concentration leads to poor crystallinity. It is also shown that the addition of Se increases N composition. Atomic force microscopy (AFM) results show that the surfaces of the samples experience a morphological change from faceting to islanding, as the N composition and Se concentration increase. Based on the TEM and AFM results, a simple model is given to explain the formation of the lateral composition modulation.  相似文献   

3.
Dong  H. K.  Li  N. Y.  Tu  C. W.  Geva  M.  Mitchel  W. C. 《Journal of Electronic Materials》1995,24(2):69-74
The growth of GaAs by chemical beam epitaxy using triethylgallium and trisdimethylaminoarsenic has been studied. Reflection high-energy electron diffraction (RHEED) measurements were used to investigate the growth behavior of GaAs over a wide temperature range of 300–550°C. Both group III- and group Vinduced RHEED intensity oscillations were observed, and actual V/III incorporation ratios on the substrate surface were established. Thick GaAs epitaxial layers (2–3 μm) were grown at different substrate temperatures and V/III ratios, and were characterized by the standard van der Pauw-Hall effect measurement and secondary ion mass spectroscopy analysis. The samples grown at substrate temperatures above 490°C showed n-type conduction, while those grown at substrate temperatures below 480°C showed p-type conduction. At a substrate temperature between 490 and 510°C and a V/III ratio of about 1.6, the unintentional doping concentration is n ∼2 × 1015 cm−3 with an electron mobility of 5700 cm2/V·s at 300K and 40000 cm2/V·s at 77K.  相似文献   

4.
Dense ZnO(0001) films formed at 500°C via coalescence of islands grown via metalorganic vapor phase epitaxy (MOVPE) either on GaN/AlN/SiC(0001) substrates or on initial, coherent ZnO layers. Conical crystallites formed due to thermal expansion-induced stresses between the ZnO and the substrate. Interfaces between the ZnO films on GaN epilayers exposed either simultaneously to diethylzinc and oxygen or only to diethylzinc at the initiation of growth were sharp and epitaxial. Interfaces formed after the exposure of the GaN to O2 were less coherent, though an interfacial oxide was not observed by cross-sectional transmission electron microscopy (TEM). Threading dislocations and stacking faults were observed in all films.  相似文献   

5.
We are reporting the first comprehensive investigation of the structural properties of cubic GaN grown on (111) GaAs substrates by low-pressure metalorganic chemical vapor deposition. The minimum full width at half maximum (FWHM) of the x-ray diffraction (XRD) peak of (111) GaN was found to be ∼12 min. The use of low temperature GaN buffers helps to reduce the FWHM of the XRD. Cross-sectional transmission electron microscopy (XTEM) revealed the presence of columnar structures in the GaN film with widths of the order of 500A. Selected area electron diffraction (SAD) patterns at the interface confirmed that cubic (111) GaN was grown in-plane with the (111) GaAs substrate. Highresolution transmission electron microscopy (HRTEM) showed that the interface characteristics of GaN on (111)A GaAs substrate were better than those of the GaN on (lll)B GaAs substrate.  相似文献   

6.
Traditional epitaxial growth of GaN by metalorganic vapor phase epitaxy (MOVPE) on mismatched substrates such as sapphire or SiC produces a columnar material consisting of many hexagonal grains ∼0.2–1.0 μm in diameter. The epitaxial-lateral-overgrowth (ELO) process for GaN creates a new material: single-crystal GaN. We have studied the ELO process for GaN grown by MOVPE in a vertical flow rotating substrate reactor. Characterization consisted of plan-view SEM and vertical-cross-section TEM studies, which revealed a large reduction in dislocation density in the overgrown regions of the GaN. Panchromatic and monochromatic cathodoluminescence images and spectra were used to study the spatial variation of the optical properties within the GaN ELO samples. The effects of growth temperature and stripe material on the overgrown layers were examined. Through the use of a higher substrate temperature during growth and the use of a SiNx stripe material, the overgrown crystal shape has a smooth 2D top surface with vertical sidewalls. Applying a second ELO step, rotated by 60°, over a fully coalesced ELO layer yields a further reduction of defects in GaN overgrown surfaces.  相似文献   

7.
Chemical beam epitaxial (CBE) GaxIn1?xP layers (x≈0.5) grown on (001) GaAs substrates at temperatures ranging from 490 to 580°C have been investigated using transmission electron diffraction (TED), transmission electron microscopy, and photoluminescence (PL). TED examination revealed the presence of diffuse scattering 1/2{111}B positions, indicating the occurrence of typical CuPt-type ordering in the GaInP CBE layers. As the growth temperature decreased from 580 to 490°C, maxima in the intensity of the diffuse scattering moved from ½{111}B to ½{?1+δ,1?δ,0} positions, where δ is a positive value. As the growth temperature increased from 490 to 550°C, the maxima in the diffuse scattering intensity progressively approached positions of $\frac{1}{2}\{\bar 110\} $ , i.e., the value of δ decreased from 0.25 to 0.17. Bandgap reduction (~45 meV) was observed in the CBE GaInP layers and was attributed to the presence of ordered structures.  相似文献   

8.
The initial nucleation of GaSb on (001) GaAs substrates by metalorganic vapor phase epitaxy has been investigated using transmission electron microscopy (TEM) and high resolution electron microscopy (HREM). TEM results showed that the GaSb islands experience a morphological transition as the growth temperature increases. For growth at 520°C, the islands are longer along the [110] direction; at 540°C, they are nearly square, and at 560°C, they are longer along the direction. Possible mechanisms are proposed to describe such a transition. TEM and HREM examination showed that lattice misfit relaxation mechanisms depend on the growth temperature. For the sample grown at 520°C, the lattice mismatch strain was accommodated mainly by 90° dislocations; for the sample grown at 540°C, the misfit strain was relieved mostly by 90° dislocations with some of 60° dislocations, and for the sample grown at 560°C, the strain was accommodated mainly by 60° dislocations which caused a local tilt of the GaSb islands with respect to the GaAs substrate. The density of threading dislocations was also found to be dependent on the growth temperature. Mechanisms are proposed to explain these phenomena.  相似文献   

9.
We have studied the influence of indium (In) composition on the structural and optical properties of Inx Ga1−xN/GaN multiple quantum wells (MQWs) with In compositions of more than 25% by means of high-resolution x-ray diffraction (HRXRD), photoluminescence (PL), and transmission electron microscopy (TEM). With increasing the In composition, structural quality deterioration is observed from the broadening of the full width athalf maximum of the HRXRD superlattice peak, the broad multiple emission peaks oflow temperature PL, and the increase of defect density in GaN capping layers and InGaN/GaN MQWs. V-defects, dislocations, and two types of tetragonal shape defects are observed within the MQW with 33% In composition by high resolution TEM. In addition, we found that V-defects result in different growth rates of the GaN barriers according to the degree of the bending of InGaN well layers, which changes the period thickness of the superlattice and might be the source of the multiple emission peaks observed in the InxGa1−xN/GaN MQWs with high in compositions.  相似文献   

10.
The polytype and surface and defect microstructure of epitaxial layers grown on 4H(), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H() and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H() films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (∼3 × 104 cm−2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H() films that decreased with film thickness to ∼106 cm−2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H() epitaxial layers.  相似文献   

11.
Low-temperature (LT) growth of In0.47Ga0.53P was carried out in the temperature range from 200 to 260°C by gas source molecular beam epitaxy using solid Ga and In and precracked PH3. The Hall measurements of the as-grown film showed a resistivity of ∼106 Ω-cm at room temperature whereas the annealed film (at 600°C for 1 h) had at least three orders of magnitude higher resistivity. The Hall measurements, also, indicated activation energies of ∼0.5 and 0.8 eV for the asgrown and annealed samples, respectively. Double-crystal x-ray diffraction showed that the LT-InGaP films had ∼47% In composition. The angular separation, Δθ, between the GaAs substrate and the as-grown LT-InGaP film on (004) reflection was increased by 20 arc-s after annealing. In order to better understand the annealing effect, a LT-InGaP film was grown on an InGaP film grown at 480°C. While annealing did not have any effect on the HT-InGaP peak position, the LT-InGaP peak was shifted toward the HT-InGaP peak, indicating a decrease in the LT-InGaP lattice parameter. Cross-sectional transmission electron microscopy indicates the presence of phase separation in LT-InGaP films, manifested in the form of a “precipitate-like” microstructure. The analytical scanning transmission electron microscopy analysis of the LT-InGaP film revealed a group-V nonstoichiometric deviation of ∼0.5 at.% P. To our knowledge, this is the first report about the growth and characterization of LT-InGaP films.  相似文献   

12.
6H-SiC/GaN pn-heterostructures were grown by subsequent epitaxial growth of p-SiC by low temperature liquid phase epitaxy (LTLPE) and n-GaN by hydride vapor phase epitaxy (HVPE). For the first time, p-type epitaxial layers grown on 6H-SiC wafers were used as substrates for GaN HVPE growth. The GaN layers exhibit high crystal quality which was determined by x-ray diffraction. The full width at a half maximum (FWHM) for the ω-scan rocking curve for (0002) GaN reflection was ∼120 arcsec. The photoluminescence spectra for these films were dominated by band-edge emission. The FWHM of the edge PL peak at 361 nm was about 5 nm (80K).  相似文献   

13.
We perform a transmission electron microscopy (TEM) characterization of blue light-emitting diode epiwafers grown homoepitaxially on a c-plane GaN substrate and compare with such grown on sapphire. We find a threading dislocation (TD) density as low as 2 × 108 cm−2 in homoepitaxial growth, which is 1/30 of that in sapphire-based material. A unique type of inverted pyramid defect with diameter ∼650 nm was observed. It originates from the homo-interface in edge-type TDs. TDs were also found to be generated within the quantum wells without a precursor TD defect. Otherwise, high-resolution TEM suggests extremely homogeneous quantum wells and barriers in terms of composition and well width. Besides plan-view TEM, wet chemical etching on n-type GaN was carried out in hot phosphoric acid to evaluate the TD density more quickly. The two methods prove to be equivalent with respect of determined TD densities.  相似文献   

14.
The microstructure of the Pt/Ti/SiO2/Si structure has been investigated by scanning and transmission electron microscopy. Pt films of 100 nm thickness deposited by sputtering or evaporation onto unheated substrates gave complete coverage of the underlying Ti layer and showed a granular and faceted structure with grains ∼20 nm in diameter. They did not exhibit hillocks or surface TiOx formation. X-ray diffraction was used to examine the film stress through use of the sin2ψ method with bulk values for the elastic constants (v=0.39, E=162 GPa). The as-deposited sputtered film had a compressive stress of ∼540 MPa, while the evaporated films had tensile stresses of ∼630 MPa. The films then received a 400°C rapid thermal anneal (RTA) for 90 s and a subsequent RTA of 650°C for 30s. Further investigation of the film stresses and microstructure were made after each annealing step. After the low temperature anneal, the film stress for the sputtered film became tensile. Plan-view sections examined by transmission electron microscopy (TEM) showed that the as-deposited sputtered films were dense but became porous after annealing. Initially, the evaporated films had a less dense microstructure, but were more stable with annealing. Little change in the stress for the evaporated film was observed after this initial low temperature annealing step. Additional annealing of the evaporated and sputtered samples caused complete consumption of the Ti layer including some TiOx formation from the underlying SiO2 layer and marked interaction with the Pt; however, little change in the stress was found. The surface of the Pt film revealed larger grains, but otherwise remained unaffected. The underlying phase changes were minimized once the Ti layer had reacted with the Pt. Due to the ratio of the layers, Pt:Ti of 2:1, the surface of the Pt was unaffected.  相似文献   

15.
Gallium nitride (GaN) thin films grown on sapphire substrates were successfully bonded and transferred onto GaAs, Si, and polymer “receptor” substrates using a low-temperature Pd-In bond followed by a laser lift-off (LLO) process to remove the sapphire growth substrate. The GaN/sapphire structures were joined to the receptor substrate by pressure bonding a Pd-In bilayer coated GaN surface onto a Pd coated receptor substrate at a temperature of 200°C. X-ray diffraction showed that the intermetallic compound PdIn3 had formed during the bonding process. LLO, using a single 600 mJ/cm2, 38 ns KrF (248 nm) excimer laser pulse directed through the transparent sapphire substrate, followed by a low-temperature heat treatment, completed the transfer of the GaN onto the “receptor” substrate. Cross-sectional scanning electron microscopy and x-ray rocking curves showed that the film quality did not degrade significantly during the bonding and LLO process.  相似文献   

16.
We correlate structural and electrical characteristics of as-deposited and low-temperature annealed Ti contacts on GaN. Temperature dependent currentvoltage measurements are used to determine the effective barrier heights of the respective contacts, while high-resolution transmission electron microscopy is utilized for structural characterization. As-deposited Ti contacts are slightly rectifying with an effective barrier height of ∼200 meV. After annealing at 230°C, the barrier height increases to values of ∼450 meV. A similar behavior of Schottky contacts with more strongly rectifying diodes upon low-temperature annealing is observed for Zr metal contacts on GaN. As-deposited Ti already forms a thin TiN layer at the GaN interface. After annealing at 230°C, the average thickness and the distribution of TiN grains remain practically unchanged, but the interface with GaN roughens. We correlate the observed barrier height changes with interface roughness and phase formation and we discuss the results in terms of interface damage and the Schottky-Mott theory.  相似文献   

17.
Nonpolar ( ) m-plane gallium nitride has been grown heteroepitaxially on (100) γ-LiAlO2 by several groups. Previous attempts to grow m-plane GaN by hydride vapor phase epitaxy (HVPE) yielded films unsuitable for subsequent device regrowth because of the high densities of faceted voids intersecting the films’ free surfaces. We report here on the growth of planar m-plane GaN films on (100) γ-LiAlO2 and elimination of bulk and surface defects. The morphology achieved is smooth enough to allow for fabrication of m-plane GaN templates and free-standing substrates for nonpolar device regrowth. The GaN films were grown in a horizontal HVPE reactor at 860–890°C. Growth rates ranged from 30 μm/h to 240 μm/h, yielding free-standing films up to 250-μm thickness. The m-plane GaN films were optically specular and mirror-like, with undulations having 50–200-nm peak-to-valley heights over millimeter length scales. Atomic force microscopy revealed a striated surface morphology, similar to that observed in m-plane GaN films grown by molecular beam epitaxy (MBE). Root-mean-square (RMS) roughness was 0.636 nm over 25-μm2 areas. Transmission electron microscopy (TEM) was performed on the m-plane GaN films to quantify microstructural defect densities. Basal-plane stacking faults of 1×105 cm−1 were observed, while 4×109 cm−2 threading dislocations were observed in the g=0002 diffraction condition.  相似文献   

18.
A systematic study has been performed to determine the characteristics of an optimized nucleation layer for GaN growth on sapphire. The films were grown during GaN process development in a vertical close-spaced showerhead metalorganic chemical vapor deposition reactor. The relationship between growth process parameters and the resultant properties of low temperature GaN nucleation layers and high temperature epitaxial GaN films is detailed. In particular, we discuss the combined influence of nitridation conditions, V/III ratio, temperature and pressure on optimized nucleation layer formation required to achieve reproducible high mobility GaN epitaxy in this reactor geometry. Atomic force microscopy and transmission electron microscopy have been used to study improvements in grain size and orientation of initial epitaxial film growth as a function of varied nitridation and nucleation layer process parameters. Improvements in film morphology and structure are directly related to Hall transport measurements of silicon-doped GaN films. Reproducible growth of silicon-doped GaN films having mobilities of 550 cm2/Vs with electron concentrations of 3 × 1017 cm−3, and defect densities less than 108 cm−2 is reported. These represent the best reported results to date for GaN growth using a standard two-step process in this reactor geometry.  相似文献   

19.
The present work describes the novel, relatively simple, and efficient technique of pulsed laser deposition for rapid prototyping of thin films and multi-layer heterostructures of wide band gap semiconductors and related materials. In this method, a KrF pulsed excimer laser is used for ablation of polycrystalline, stoichiometric targets of wide band gap materials. Upon laser absorption by the target surface, a strong plasm a plume is produced which then condenses onto the substrate, kept at a suitable distance from the target surface. We have optimized the processing parameters such as laser fluence, substrate temperature, background gas pressure, target to substrate distance, and pulse repetition rate for the growth of high quality crstalline thin films and heterostructures. The films have been characterized by x-ray diffraction, Rutherford backscattering and ion channeling spectrometry, high resolution transmission electron microscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy, cathodoluminescence, and electrical transport measurements. We show that high quality AlN and GaN thin films can be grown by pulsed laser deposition at relatively lower substrate temperatures (750–800°C) than those employed in metal organic chemical vapor deposition (MOCVD), (1000–1100°C), an alternative growth method. The pulsed laser deposited GaN films (∼0.5 μm thick), grown on AlN buffered sapphire (0001), shows an x-ray diffraction rocking curve full width at half maximum (FWHM) of 5–7 arc-min. The ion channeling minimum yield in the surface region for AlN and GaN is ∼3%, indicating a high degree of crystallinity. The optical band gap for AlN and GaN is found to be 6.2 and 3.4 eV, respectively. These epitaxial films are shiny, and the surface root mean square roughness is ∼5–15 nm. The electrical resistivity of the GaN films is in the range of 10−2–102 Θ-cm with a mobility in excess of 80 cm2V−1s−1 and a carrier concentration of 1017–1019 cm−3, depending upon the buffer layers and growth conditions. We have also demonstrated the application of the pulsed laser deposition technique for integration of technologically important materials with the III–V nitrides. The examples include pulsed laser deposition of ZnO/GaN heterostructures for UV-blue lasers and epitaxial growth of TiN on GaN and SiC for low resistance ohmic contact metallization. Employing the pulsed laser, we also demonstrate a dry etching process for GaN and AlN films.  相似文献   

20.
The microstructure of p-n device structures grown by liquid-phase epitaxy (LPE) on CdZnTe substrates has been evaluated using transmission electron microscopy (TEM). The devices consisted of thick (∼21-μm) n-type layers and thin (∼1.6-μm) p-type layers, with final CdTe (∼0.5 μm) passivation layers. Initial observations revealed small defects, both within the n-type layer (doped with 8×1014/cm3 of In) and also within the p-type layer but at a much reduced level. These defects were not visible, however, in cross-sectional samples prepared by ion milling with the sample held at liquid nitrogen temperature. Only isolated growth defects were observed in samples having low indium doping levels (2×1014/cm3). The CdTe passivation layers were generally columnar and polycrystalline, and interfaces with the p-type HgCdTe layers were uneven. No obvious structural changes were apparent in the region of the CdTe/HgCdTe interfaces as a result of annealing at 250°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号