首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过引入沉浸函数建立了双尺度多孔介质非饱和流动模型,并采用有限元/控制体积法实现了恒压及恒流注射条件下液体模塑成型(LCM)工艺二维径向非饱和流动的数值模拟,得到了不同注射条件下纤维织物内的压力场分布及半饱和区域长度随时间的变化规律,并将双尺度非饱和理论结果与单尺度饱和理论结果进行对比。结果表明:非饱和流动过程中,半饱和区域内的压力和压力梯度明显下降;半饱和区域长度随时间逐渐增加随后保持稳定,当流动前沿到达出口后半饱和区域长度开始逐渐减小;当两个主方向渗透率不同时,沿主方向半饱和区域长度也不同,渗透率越大该方向的半饱和区域长度也越大,纤维织物完全浸润时间取决于较小的渗透率。研究结果对合理预测树脂填充过程中压力分布及纤维预制件的浸润具有指导意义。  相似文献   

2.
Vacuum assisted resin transfer molding (VARTM) is one of the important processes to fabricate high performance composites. In this process, resin is drawn into the mold to impregnate the fiber reinforcement to a form composite. A resin distribution layer with high permeability was often introduced on top of the fiber reinforcement to accelerate the filling speed. Due to the difference of the flow resistance in the resin distribution layer and the reinforcement as well as the resulting through thickness transverse flow, the filling flow field is intrinsically three-dimensional. This study developed a two-layer model with two-dimensional formulation to simulate the filling flow of the VARTM process with a resin distribution layer. Two-dimensional flow was considered in each layer and a transverse flow in the thickness direction was estimated between the two layers. Thermal analysis including the transverse convection was also performed to better simulate the temperature distribution.  相似文献   

3.
This study investigated data assimilation through integration of visual observation with a stochastic numerical simulation of resin flow during vacuum-assisted resin transfer molding. The data assimilation was performed using the four-dimensional asynchronous ensemble square root filter and a stochastic numerical simulation by means of the Karhunen–Loève expansion of the permeability field. Through numerical experiments of linear flow, it was verified that the estimation accuracy of the resin impregnation behavior improved compared to that when using conventional data assimilation and that the permeability field could be estimated simultaneously, although it is not explicitly related to the observation. We also investigated the applicability of the proposed method to radial-injection VaRTM by varying the model thickness. The proposed method successfully estimated the resin impregnation behavior and permeability field. Additionally, the required condition for the number of ensemble members was clarified.  相似文献   

4.
《Composites Part A》2003,34(8):779-789
For liquid composite molding (LCM) processes, such as resin transfer molding (RTM), the quality of final parts is heavily dependent on the uniformity of the fiber preform. However, the conventional permeability measurement method, which uses liquid (oil or resin) as its working fluid, only measures the average preform permeability in an off-line mode. This method cannot be used to create an in situ permeability profile because of fiber pollution. Further, the conventional method cannot be used to reveal preform's local permeability variations. This paper introduces a new permeability characterization method that uses gas flow to detect and measure preform permeability variations in a closed mold assembly before resin injection. This method is based upon two research findings: (1) resin permeability is highly correlated with air permeability for the same fiber preform with well-controlled gas flow, and (2) the whole-field air permeability profile of a preform can be obtained through measuring the pressure field of gas flow.In this study, first the validity of the gas-assisted, in situ permeability measurement technique was established. Then the technique was demonstrated as effective by qualitatively detecting non-uniformities and permeability variations in fiber performs. Finally, a two-dimensional flow model, based on the finite difference scheme, was developed to quantitatively estimate the whole-field preform permeability profile using predetermined pressure distribution. The efficacy of the new method was illustrated through experimental results.  相似文献   

5.
《Composites Part A》2003,34(1):67-74
This paper describes the development of a new sensor type for resin flow detection in liquid composite molding (LCM) processing. The sensor can be applied in any LCM process where lineal and high-resolution flow front detection is required, i.e. during prototyping or as a feedback sensor during flow front control. The operating principle of the embedded sensor is based on electrical time domain reflectometry (E-TDR). The system analyzes changes in the transmission line response during wet-out of the preform. The flat band transmission line, which is interrogated by E-TDR changes its dielectric properties when the resin is on or near the sensor resulting in reflection of the electrical signal. The signal is evaluated in the time-domain by mapping the areas of resin on the sensor. The study illustrates an analytical model to predict the TDR response for different resin systems, validates the accuracy and resolution of the system in a lab-scale set-up and implements the sensor in several different injection scenarios.  相似文献   

6.
基于复合材料液态模塑(LCM)工艺过程中存在半饱和区域的实验现象以及对预制体双尺度效应的逐步认识, 一些学者提出用沉浸模型来研究双尺度多孔介质的不饱和流动。通过体积均匀化方法描述了双尺度多孔介质复合材料液态模塑工艺模型的特征, 得到含有沉浸项的双尺度多孔介质的质量守恒方程, 并采用有限元法对方程进行数值求解, 通过具体算例计算了考虑双尺度效应时恒压树脂注射下不同时段的压力分布状态, 得到树脂在填充过程中流动前沿半饱和区域从出现到消失的过程, 采用不同注射压力进行模拟并比较。结果表明, 与单尺度多孔介质模型不同, 双尺度多孔介质模型更能反映实际树脂填充过程中出现的半饱和区域现象。  相似文献   

7.
Resin flow through fiber preforms was analyzed mathematically. Closed form solutions for fiber volume fraction distribution and pressure field during resin infusion into fiber preforms were suggested, and a new effective permeability was defined. The effect of preform compressibility on the fiber volume fraction and pressure distributions in resin-saturated region was investigated analytically. The findings show that the compaction behavior of preforms has significant impact on the resin infusion process. The solutions derived analytically in this study can provide insight into a liquid composites molding (LCM) process.  相似文献   

8.
Air entrapment within and between fiber tows during preform permeation in liquid composite molding (LCM) processes leads to undesirable quality in the resulting composite material with defects such as discontinuous material properties, failure zones, and visual flaws. Essential to designing processing conditions for void-free filling is the development of an accurate prediction of local air entrapment locations as the resin permeates the preform. To this end, the study presents a numerical simulation of the infiltrating dual-scale resin flow through the actual architecture of plain weave fibrous preforms accounting for the capillary effects within the fiber bundles. The numerical simulations consider two-dimensional cross sections and full three-dimensional representations of the preform to investigate the relative size and location of entrapped voids for a wide range of flow, preform geometry, and resin material properties. Based on the studies, a generalized paradigm is presented for predicting the void content as a function of the Capillary and Reynolds numbers governing the materials and processing. Optimum conditions for minimizing air entrapment during processing are also presented and discussed.  相似文献   

9.
为了探讨复合材料液态模塑成型(LCM)过程中充填时间和树脂流动前锋形状对材料参数及工艺参数的敏感程度,考虑树脂非稳态浸润过程中的边缘效应以及固化反应现象,引入灵敏度分析方法,推导了模腔内流体压力灵敏度和流体速度灵敏度等关键物理量参数之间所满足的数学关系,构建了充填时间灵敏度方程以及表征材料浸润缺陷形成可能性的树脂流动前锋形状函数及其灵敏度方程,并设计了各物理量的耦合求解方法及灵敏度分析的技术路线。在此基础上,自主开发了数值模拟软件,数值分析了关键材料和工艺参数对树脂流场发展的影响规律和程度。模拟结果表明,在恒压注射边界条件下,提高流体注射温度是提高生产效率最有效的方法,减少边缘区域渗透率则是最能改善树脂流动前锋形状以及充填浸润效果的途径。  相似文献   

10.
采用真空导入模塑工艺(VIMP)制备纤维增强聚合物基复合材料多墙结构件时,多墙体拐角处的纤维弯曲变形可能导致多墙体局部渗透特性发生变化。通过可视化流动实验考察了拐角对多墙体渗透特性和树脂流动行为的影响。结果表明:无论是否使用导流介质,多墙体中的拐角对树脂流体在VIMP灌注过程中都具有局部阻力作用,降低了树脂充模流动速度和多墙体整体表观渗透率,即存在拐角效应;拐角处铺放导流介质能有效降低拐角效应;随着拐角到注胶口的距离增大,整体表观渗透率表现为先下降后上升。  相似文献   

11.
为优化复杂预成型体结构的液体成型工艺,基于有限元法/生死节点法模拟了复合材料液体模塑成型过程树脂流动,并针对典型矩形平板、圆板结构、I型加筋壁板充模过程进行了仿真与验证。结果表明:典型矩形平板和圆板结构的充模过程模拟结果与理论解一致性较好,验证了生死节点法跟踪树脂流动前锋的有效性。含有方腔的变厚度圆柱体和正方体三维实体结构的充模过程模拟验证了有限元方法对三维结构的适用性。基于有限元法/生死节点法的液体充模过程模拟方法对于复杂求解区域具有更好适应性,可用于复杂实体结构的液体模塑成型工艺过程树脂流动规律预测、指导模具设计及工艺优化。   相似文献   

12.
对复合材料与金属经缝合连接形成的夹层结构板的树脂传递模塑成型(RTM)工艺进行了充模模拟研究。首先通过实验和数值计算的方法,分别获得缝合夹层结构织物和芯层孔洞的渗透率;随后,建立能够反映缝孔内流动情况的二维和三维简化模型,进行RTM充模仿真,讨论不同工艺参数对成型流动的影响;最后通过成型实验验证工艺的可行性。缝线与孔洞直径之比为0.3~0.8时,孔洞渗透率随缝线直径的增大而减小,预制体织物渗透率与孔洞渗透率相差两个数量级;缝孔内容易产生缺陷,没有缺陷的区域随着注射压力的增加、孔洞密度和芯层厚度的减小而增大,在芯层表面沿每排孔洞单向开槽能够改善树脂在孔洞内的浸润;线注射时,树脂整体流动情况优于点注射,而点注射时,将进胶口设置在一角,能够减少表面干斑。  相似文献   

13.
《Composites Part A》2007,38(10):2154-2163
During the manufacturing of particle-filled resin composite parts with a liquid composite molding (LCM) process, undesirable issues arise like resin viscosity increase or particles filtration. As the filled resin flow is taking place, the fibrous preform may act as a filter and hinder the even repartition of the fillers throughout the part or even stop the mold filling. The present paper proposes an experimental investigation of the particle filtration during the injection of a composite part. The model proposed by Erdal et al. is analysed and improved in order to take liquid retention phenomenon into account. Finally, simulated and experimental data are compared.  相似文献   

14.
It is difficult to visualize the flow in the cross-section direction, and most conventional methods for monitoring resin flow are limited to the in-plane direction. This study investigates the monitoring of the cross-section of resin impregnation using an area-sensor array during a resin transfer molding (RTM) process. The area-sensor array is mounted on a thin polyimide film that is integrated with the inter-digital electrode array and associated wiring, and forms the bottom layer of the stacked composite laminates. Each area-sensor is square-shaped and measures the capacitance and electrical resistance of the sensor region. First, we constructed the equivalent electrical circuit model of in-plane and out-of-plane impregnation. Using this model, we proposed a method to identify the flow direction and the ratio of the impregnation thickness by measuring the electrical capacitance and resistance. The validity of the model was confirmed by comparison with the experimental results. To demonstrate the applicability of the proposed method, the area-sensor array was applied to monitoring the resin injection through-thickness to the glass fabric laminates. As a result, the cross-section of the impregnated area could be estimated and the estimated area provided a good match to the actual impregnated area.  相似文献   

15.
《Composites Part A》2007,38(3):802-813
Vacuum assisted resin transfer molding (VARTM) is a liquid composite molding (LCM) technique used to manufacture large scale composite structures. Fiber preforms are placed on a tool surface and covered by a flow enhancement layer and a plastic bag. A vacuum is drawn on the system to infuse the resin. When the resin does not fully saturate the empty regions in between the fibers, voids are created. The fiber tows in woven and stitched preforms have a much lower permeability as compared to the bulk permeability of the fabric. Hence, fiber tows saturate with resin later than the pores between fiber tows and are more prone to voids.This study explores the impact of extended resin bleeding time and additional flow resistance at the vent on the void content within fiber tows both experimentally and by numerical simulation. Samples were machined from each of the manufactured panels and analyzed using image analysis techniques to obtain a relative void content. The experimental results were compared to results obtained by numerical simulation.The experimental void distribution showed that if resin is not allowed to bleed or if no external resistance is attached at the vent, the void content over the length of the part is not uniform. All void levels reduced when resistance was added or bleeding was allowed. The discrepancy between experimental and numerical results was addressed by including deformable distribution media in numerical model to capture the continuation of resin flow after the injection gate is closed.  相似文献   

16.
A process cycle of resin transfer molding (RTM) consists of two sequential stages, i.e. filling and curing stages. These two stages are interrelated in non-isothermal processes so that the curing stage is dominated by the resin flow as well as temperature and conversion distributions during the filling stage. Therefore, it is necessary to take into account both filling and curing stages to analyze the process cycle accurately. In this paper, a full three-dimensional process cycle simulation of RTM is performed. Full three-dimensional analysis is necessary for thick parts or parts having complex shape. A computer code is developed based on the control volume/finite element method (CV/FEM). The resulting computer code can provide information regarding flow progression and pressure field during mold filling; and temperature distribution and degree of cure distribution for a process cycle. The computer code can also be used for process cycle simulation of composite structures with complex geometry and with various molding strategies including switching injection strategy, multiple gate injection strategy and variable mold wall temperature. Numerical examples provided in the present work show the capabilities of the computer code in analyzing the process cycle.  相似文献   

17.
《Composites Part A》2007,38(1):138-146
Liquid composite molding (LCM) has become an important processing technique to manufacture high-performance composite parts. The sensing of the process parameters, such as resin fill of the porous material, are key to improve repeatability, maximize quality and minimize cost. This paper describes a distributed flow sensor, which considerably decreases tooling integration costs and improves spatial resolution by allowing sensing of hundreds of sensing elements with a single input/output port. The transmission line sensor is virtually divided into a large number of small discrete transmission lines treated as a long array of sensing elements. Piecewise sensing is achieved by electric time-domain reflectometry and inversion of a non-uniform transmission line model. The paper describes the distributed sensing approach, experimentally validates distributed sensing in a LCM setup, and analyzes critical sensor parameters.  相似文献   

18.
In Liquid Composite Molding (LCM) processes with compliant tool, such as Vacuum Assisted Resin Transfer Molding Process (VARTM), resin flow continues even after the inlet is closed due to the preform deformation and pressure gradient developed during infusion. The resin flow and thickness changes continue until the resin pressure becomes uniform or the resin gels. This post-filling behavior is important as it will determine the final thickness and fiber volume fraction distribution in the cured composite. In this paper, a previously proposed one dimensional coupled flow and deformation process model has been compared with the experimental data in which the resin pressure and part thickness at various locations during the post-filling stage is recorded. Two different post-infusion scenarios are examined in order to determine their impact on the final part fiber volume fraction and thickness. The effects of different venting arrangements are demonstrated. The model predictions compare favorably with the experimental data, with the minor discrepancies arising due to the variability of material properties.  相似文献   

19.
Characterization of preform permeability in the presence of race tracking   总被引:2,自引:0,他引:2  
For realistic simulation of resin flow in a stationary fibrous porous preform during Liquid Composite Molding (LCM) processes, it is necessary to input accurate material data. Of great importance in simulating the filling stage of the LCM process is the preform permeability; a measure of the resistance the preform poses to the flowing fluid. One method to measure permeability values is by conducting one-dimensional flow experiments, and matching the flow behavior to known analytical models. The difficulty is the edge effects such as race tracking disrupt the flow and violate the one-dimensional flow assumption. The new approach outlined in this paper offers a methodology to obtain accurate bulk permeability values despite any race tracking that may be present along the edges of the mold containing isotropic fabrics. Further, a method of approximate equivalent isotropic scaling is explained to extend the use of this method to determine permeability of anisotropic materials with race tracking present. Both approaches are validated with computer simulations, and then utilized in laboratory experimentation. The values calculated from this approach compare well with permeability values obtained from one-dimensional permeability experiments without the presence of race tracking.  相似文献   

20.
On-line strategic control of liquid composite mould filling process   总被引:3,自引:0,他引:3  
Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped fibre reinforced polymeric composite parts in the aerospace, automotive, marine and civil industries. A thermoset resin is injected into a mould cavity filled with a reinforcing fibrous preform. The composite part is demoulded after the filling is completed and resin has cured. During prototype development, the design engineers may combine their manufacturing experience with simulations to decide which LCM process must be used for the selected part. For complicated mould shapes, the manufacturing engineer has to make decisions about injection pressure, flow rate, location of gates and vents, etc. to achieve a high-quality composite part which is free of dry spots. Inherent variability in the process and the possible errors in characterization of material properties, such as fibre volume fraction and permeability, challenge the manufacturing engineer to reduce the number of unacceptable parts. An on-line strategic controller with in situ sensor data can influence the flow front pattern during mould filling and drive the process towards successful completion. Some of these variabilities are considered in off-line mould filling simulations. By analysing the simulation results, the sensors are placed inside the mould to identify the variabilities and take corrective action(s) to eliminate voids. Sensor data and the control actions are cast in the form of a decision tree. Data acquisition software collects the in situ sensor data and implements the control actions from this decision tree. A case study was included in which various race-tracking and bulk permeability variations can be expected during manufacturing. The proposed controller is described in detail for this selected case study and its usefulness is verified with experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号