首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research on flexible thermal interface materials (TIMs) has shown that the interconnected network of graphene foam (GF) offers effective paths of heat transportation. In this work, a variant amount of multilayer graphene flakes (MGFs) was added into 0.2 vol% GF/polydimethylsiloxane (PDMS) composite. A remarkable synergistic effect between MGF and GF in improving thermal conductivity of polymer composites is achieved. With 2.7 vol% MGFs, the thermal conductivity of MGF/GF/PDMS composite reaches 1.08 W m−1 K−1, which is 80%, 184% and 440% higher than that of 2.7 vol% MGF/PDMS, GF/PDMS composites and pure PDMS, respectively. The MGF/GF/PDMS composite also shows superior thermal stability. The addition of MGFs and GF decreases slightly the elongation at break, but observably increases the Young’s modulus and tensile strength of composites compared with pure PDMS. The good performance of MGF/GF/PDMS composite makes it a good TIM for possible application in thermal management of electronics.  相似文献   

2.
In this work, 3D graphene structures constructed by graphene foam (GF) were introduced into polyamide-6 (PA6) matrix for the purpose of enhancing the thermal-conductive and anti-dripping properties of PA6 composites. The GF were prepared by one-step hydrothermal method. The PA6 composites were synthesized by in-situ thermal polycondensation method to realize PA6 chains covalently grafted onto the graphene sheets. The 3D interconnected graphene structure favored the formation of the consecutive thermal conductive paths or networks even at relatively low graphene loadings. As a result, the thermal conductivity was improved by 300% to 0.847 W·m−1·K−1 of PA6 composites at 2.0 wt% graphene loading from 0.210 W·m−1·K−1 of pure PA6 matrix. The presence of self-supported 3D structure alone with the covalently-grafted PA6 chains endowed the PA6 composites good anti-dripping properties.  相似文献   

3.
The polystyrene (PS) macromolecular chains were grafted on the surface of graphene layers by reversible addition-fragmentation chain transfer (RAFT) polymerization. In this procedure, a RAFT agent, 4-Cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, was used to functionalize the thermal reduced graphene oxide (TRGO) to obtain the precursor (TRGO-RAFT). It can be calculated that the grafting density of PS/graphene (PRG) composites was about 0.18 chains per 100 carbons. Successful in-plain attachment of RAFT agent to TRGO and PS chain to TRGO-RAFT was shown an influence on the thermal property of the PRG composites. The thermal conductivity (λ) improved from 0.150 W m−1 K−1 of neat PS to 0.250 W m−1 K−1 of PRG composites with 10 wt% graphene sheets loading. The thermal property of PRG composites increased due to the homogeneous dispersion and ordered arrangement of graphene sheets in PS matrix and the formation of PRG composites.  相似文献   

4.
The influence of polymer modifier chain length on the thermal conductivity of polyamide 6/graphene (GA) nanocomposites, including through-plane (λz) and in-plane (λx) directions were investigated. Here, three chain lengths of double amino-terminated polyethylene glycol (NH2–PEG–NH2) were used to covalently functionalize graphene with graphene content of 5.0 wt%. Results showed that λz was enhanced with the chain length of NH2–PEG–NH2 increased, but λx reached a maximum value at a certain chain length of NH2–PEG–NH2. The maximum λz and λx of GA are 0.406 W m−1 K−1 and 9.710 W m−1 K−1, respectively. This study serves as a foundation for further research on the thermal conductive property of graphene nanocomposites using different chain lengths of polymer modifier to improve the λz and λx of the thermal conductive materials.  相似文献   

5.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

6.
A novel kind of composite absorber, i.e. FePCB/graphene composite, with excellent microwave absorption properties was successfully fabricated by a simple and scalable ball milling method. After being milled, the FePCB particles displayed flaky morphology with large aspect ratio. The complex permittivity and permeability of the flaky FePCB distinctly increased compared with those before milling. Furthermore, with the introduction of graphene, the flaky FePCB/graphene composite exhibited excellent microwave absorption performance with strong absorption and wide absorption band. In particular, for FePCB/graphene composite with an absorber thickness of 2 mm, the reflection loss (RL) reached a minimum of −45.3 dB at 12.6 GHz and the effective absorption bandwidth (RL < −10 dB) covered 5.4 GHz. The enhanced microwave absorption performance of the FePCB/graphene composite was attributed to the high magnetic loss and improved impedance matching which were closely related to the flake-shaped FePCB particles and the introduction of graphene sheets.  相似文献   

7.
The effect of thermally reduced graphene oxide (TRGO) on the electrical percolation threshold of multi wall carbon nanotube (MWCNT)/epoxy cured composites is studied along with their combined rheological/electrical behavior in their suspension state. In contrast to MWCNT and carbon black (CB) based epoxy composites, there is no prominent percolation threshold for the bi-filler (TRGO–MWCNT/epoxy) composite. Furthermore, the electrical conductivity of the bi-filler composite is two orders of magnitude lower (∼1 × 10−5 S/m) than the pristine MWCNT/epoxy composites (∼1 × 10−3 S/m). This result is primarily due to the strong interaction between TRGO and MWCNTs. Optical micrographs of the suspension and scanning electron micrographs of the cured composites indicate trapping of MWCNTs onto TRGO sheets. A morphological model describing this interaction is presented.  相似文献   

8.
A conductive network composed of reduced graphene oxide (RGO) planes and polyaniline (PANI) chains was designed and fabricated by in situ polymerization of aniline monomer on the RGO planes. It was further used for fabrication of conductive composites with a polymer matrix–ethylene vinyl acetate (EVA). The composites achieve improved conductivity at a low filler loading although the host polymer–EVA–is of insulator. For instance, compared to the pure EVA polymer, the conductivity of the composite filled with 4.0 wt.% RGO and 8.0 wt.% PANI increases from 1.2 × 10?14 S cm?1 to 1.07 × 10?1 S cm?1. In addition, thermal stability of the composites is also enhanced by the filler loading.  相似文献   

9.
Graphene oxide (GO) was added to a polymer composites system consisting of surfactant-wrapped/doped polyaniline (PANI) and divinylbenzene (DVB). The nanocomposites were fabricated by a simple blending, ultrasonic dispersion and curing process. The new composites show higher conductivity (0.02–9.8 S/cm) than the other reported polymer system filled with PANI (10−9–10−1 S/cm). With only 0.45 wt% loading of GO, at least 29% enhancement in electric conductivity and 29.8% increase in bending modulus of the composites were gained. Besides, thermal stability of the composites was also improved. UV–Vis spectroscopy, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) revealed that addition of GO improves the dispersion of PANI in the polymer composite, which is the key to realize high conductivity.  相似文献   

10.
Light-weight graphene/Si (G/Si) hybrid binder-free electrode is deemed a high energy density anode contender for lithium ion batteries (LIBs). However, paper-like G/Si electrodes tend to show an increased migration distance for Li+ through the fast interlayer channel with the increment of electrode size, in addition to an intrinsically slow diffusion kinetics; thereby encumbering their commercial realisation in high energy density and long life LIBs. To address these problems, herein, sandwich-structured graphene/carbon nanotube/silicon (G/CNT/Si, Si: 56 wt.%, ∼500 nm) hybrid grid is designed, cognizant of its uniform and shorter Li+ migration distance. Cyclic voltammograms indicate G/CNT/Si paper and grid anode to exhibit good electrochemical activity at both low and high temperatures. Noteworthy is that the Li+ diffusion coefficient ratio between G/CNT/Si grid and paper anodes are 1.82, 1.64, 1.43, 1.36 and 1.53 at a temperature of −5, 10, 25, 40 and 55 °C, respectively. The initial coulombic efficiencies of both paper and grid anode are as high as ∼82%. After 60 cycles at 420 mA g−1, the charge capacity of G/CNT/Si grid is retained at 808 mA h g−1, which by far surpasses that of paper anode (i.e., 490 mA h g−1). The attained lithium ion storage performance at both high and low temperatures, underpins the G/CNT/Si sandwiched grid as effective to realise the practical deployment of paper-like graphene electrodes for high energy density and long life LIBs.  相似文献   

11.
A series of epoxy resin (EP) filled graphite foam (GF) composites were prepared to explore a new material with good heat transfer property. The effects of the mass fraction of EP and the network structure of GFs on the thermal diffusivity and the compression strength of the composites were investigated. The thermal diffusivity of the GF/EP composite with EP mass fraction of 91.45% was raised to 6.541 mm2/s, which was 45.7 times higher than the pure EP. The thermal conductivity reached to 14.67 W/(m K), which was 43.1 times higher than the pure EP. The compression strength of the GF/EP increased 55% above the value of pure EP. In addition, the thermal diffusivity of GF/EP increased with the decrease of the mass fraction of EP. A model was formulated to calculate the pressure needed for a mass fraction of EP.  相似文献   

12.
The cryogenic interlaminar shear strength (ILSS) at cryogenic temperature (77 K) of glass fabric (GF)/epoxy composites is investigated as a function of the graphene oxide (GO) weight fraction from 0.05 to 0.50 wt% relative to epoxy. For the purpose of comparison, the ILSS of the GF/epoxy composites is also examined at room temperature (RT, 298 K). The results show that the cryogenic ILSS is greatly improved by about 32.1% and the RT ILSS is enhanced by about 32.7% by the GO addition at an appropriate content of 0.3 wt% relative to epoxy. In addition, the ILSS of the composite at 77 K is much higher than that at RT due to the relatively strong interfacial GF/epoxy adhesion at 77 K compared to the RT case.  相似文献   

13.
Copper matrix composites reinforced with about 90 vol.% of diamond particles, with the addition of zirconium to copper matrix, were prepared by a high temperature–high pressure method. The Zr content was varied from 0 to 2.0 wt.% to investigate the effect on interfacial microstructure and thermal conductivity of the Cu–Zr/diamond composites. The highest thermal conductivity of 677 W m−1 K−1 was achieved for the composite with 1.0 wt.% Zr addition, which is 64% higher than that of the composite without Zr addition. This improvement is attributed to the formation of ZrC at the interface between copper and diamond. The variation of thermal conductivity of the composites was correlated to the evolution of interfacial microstructure with increasing Zr content.  相似文献   

14.
Graphene nanosheets (GS) had been solvothermally synthesized through reducing hexachloro-1,3-butadiene (C4Cl6) by metallic sodium (Na) in polyethylene glycol-600 (PEG-600) at 300 °C. Atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) investigations indicated that 1–3 graphite layers could be observed. The Raman spectrum showed that the peak of 2D band at 2693 cm? 1 of GS had a smaller wave number and stronger intensity compared to the 2717 cm? 1 of commercial graphitic flakes. Meanwhile, the ID/IG value of GS was 0.40 indicating a lower density of defects of GS. The possible reaction process was that C4Cl6 was dechlorinated by Na in the presence of PEG-600 to produce carbon framework, then these newly produced carbon framework would connect to each other to form the hexagonal network of graphene.  相似文献   

15.
For obtaining the technical data to evaluate the performance of hydrogen storage by adsorption on graphene sheets (GS), analysis of adsorption equilibrium of hydrogen on the GS and the activated carbon were carried out based on the hydrogen adsorption data covering a wide temperature range. The GS and SAC-02 activated carbon, which respectively had a specific surface area about 300 m2/g and 2074 m2/g, were selected as adsorbents. Six adsorption isotherms of excess amounts of high purity hydrogen were measured at temperature from 77.15 K to 293.15 K and pressure up to 6 MPa. Parameters of Langmuir, Langmuir–Freundlich and Toth equations were set by non-linear fit against adsorption data, predicting accuracy of the equations was then evaluated by the accumulated relative errors between experimental data and those from the equations under different pressure regions. Absolute adsorption amounts determined by the modified equation were used to calculate the isosteric heat of adsorption.It shows that both adsorption isotherms of hydrogen on the GS and the activated carbon have the features of Type I, but the trend of isotherms varying over the pressure is different within the lower temperature region. Results from Langmuir equation have the largest error. Toth equation can much accurately predict the adsorption data with an overall accumulated relative error less than 4%. The value of the isosteric heat of hydrogen adsorption on the GS is about 5.06–6.37 kJ/mol, which is much higher than 4.05–5.52 kJ/mol for hydrogen on the SAC-02 activated carbon under the whole experimental condition. It reveals that interaction between hydrogen molecules and the graphene layer is stronger than that of hydrogen and carbon surface, and Toth equation could be appropriate to analyzing adsorption equilibrium for hydrogen on carbon based adsorbents.  相似文献   

16.
This paper demonstrated a capric acid–palmitic acid–stearic acid ternary eutectic mixture/expanded graphite (CA–PA–SA/EG) composite phase change material (PCM) for low-temperature heat storage. The CA–PA–SA ternary eutectic mixture with a mass ratio of CA:PA:SA = 79.3:14.7:6.0 was prepared firstly, and its mass ratio in the CA–PA–SA/EG composite can reach as high as 90%. The melting and freezing temperatures of CA–PA–SA/EG composite were 21.33 °C and 19.01 °C, and the corresponding latent heat were 131.7 kJ kg−1 and 127.2 kJ kg−1. The CA–PA–SA/EG composite powders can be formed into round blocks by dry pressing easily, with much higher thermal conductivity than CA–PA–SA. Thermal performance test showed that the increasing thermal conductivity of CA–PA–SA could obviously decrease the melting/cooling time. Thermal property characterizations after 500 heating/cooling cycles test indicated that CA–PA–SA/EG composite PCM had excellent thermal reliability. Based on all these results, CA–PA–SA/EG composite PCM is a promising material for low-temperature thermal energy storage applications.  相似文献   

17.
High-performance electromagnetic absorbers with wide absorption band, strong absorption and lightweight are necessary for industry and military application. To obtain the desired materials, two-dimensional (2D) atomic layers structure nanosheets, such as graphene and graphene-like, were adopted due to its unique structure and properties. Here, 3D architecture reduced graphene oxide-molybdenum disulfide (RGO-MoS2) composite was prepared by one-pot hydrothermal reaction. MoS2 generated on graphene oxide intercalation through hydrothermal process and rGO is obtained in the meanwhile. 3D architecture RGO-MoS2 composite can effectively prevent two-dimensional nanosheets re-stacked and can be applied in electromagnetic wave absorption field. In this paper, composites consist of RGO and various MoS2 were prepared and their electromagnetic performances were investigated for the first time. Maximum absorption bandwidth (RL < −10 dB) is 5.92 GHz with thickness of 2.5 mm. We may reasonably conclude that RGO-MoS2 composite can serve as excellent light-weight electromagnetic wave absorbers and can be widely used in practice.  相似文献   

18.
Polyimide/reduced graphene oxide (PI/r-GO) core–shell structured microspheres were fabricated by in-situ reduction of graphene oxide (GO), which was coated on the surface of PI microspheres via hydrogen bonding and π–π stacking interaction. The highly ordered 3D core–shell structure of PI/r-GO microspheres with graphene shell thickness of 3 nm was well characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM) and Raman spectra. The glass transition temperature (Tg) of PI/r-GO microspheres was slightly increased because of the interaction of r-GO and PI matrix while the temperature at 5% weight loss (T5%) of PI/r-GO microspheres was decreased due to the side effect of reductant hydrazine hydrate. The PI/r-GO nanocomposites exhibited highly electrical conductivity with percolation threshold of 0.15 vol% and ultimate conductivity of 1.4 × 10−2 S/m. Besides, the thermal conductivity of PI/r-GO nanocomposites with 2% weight content of r-GO could reach up to 0.26 W/m K.  相似文献   

19.
Nowadays, dielectric materials with excellent mechanical and hydrophobic properties are desired for use in the integrated circuits (ICs). For this reason, low dielectric constant fluorographene/polyimide (FG/PI) composite films were prepared by a facile solution blending method, suggesting that the mechanical, electrical, hydrophobic and thermal properties were significantly enhanced in the presence of FG. With addition of 1 wt% FG, the tensile strength, Young’s modulus and elongation at break were dramatically increased by 139%, 33% and 18% respectively when compared with pure PI film. Furthermore, composite films exhibit superior hydrophobic and thermal stability performance. Especially, the FG/PI film with 0.5 wt% of FG possessing a low dielectric constant of 2.48 and a good electrical insulativity that is lower than 10−14 S m−1. Therefore, by their excellent performance, FG/PI hybrid films represent suitable candidate solutions with applications in the microelectronics and aerospace industries.  相似文献   

20.
In this study, layer-by-layer self-assembly of polyethyleneimine (PEI)/graphene oxide (GO) was successfully controlled by an applied electric field. The influences of the applied electric field direction, voltage, and dipping time on the hydrogen barrier properties of PEI/GO self-assembled film were investigated. Ultraviolet–visible light absorption spectroscopy, ellipsometry, atomic force microscopy, and scanning electron microscopy were used to analyze the effects of the electric field on the growth, nanostructure, and micromorphology of the self-assembled film. Results indicated that an applied electric field accelerates the adsorption rate of assembly and increases the GO adsorption quantity. Additionally, such electric field modifies the composite structure of the self-assembled film and spreads out the GO sheets uniformly on the substrate, which results in the formation of a more compact and ordered gas barrier layer with significantly improved hydrogen barrier properties. Higher applied voltage results in a more noticeable field effect. Under 25 V, the hydrogen transmission rate of the PEI/GO self-assembled 10-layer film reached 81 cm3/m2 24 h 0.1 MPa, which was 65% lower than that of standard composite films prepared without using an electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号