首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature on the low velocity impact resistance properties and on the post-impact flexural performance of CFRP laminates were studied. With this aim, 150 × 75 mm cross-ply carbon fibre/epoxy laminates with a [0/90/90/0]2s layup, therefore with a total of sixteen layers, were impacted at ambient temperature (30 °C) and at elevated temperatures (55, 75 and 90 °C) at a velocity of 2 m/s using a drop weight impact tower. This was followed by flexural tests carried out at ambient temperature using a three-point bending rig. Damage assessment of impact and post-impact behaviour were carried out using ultrasonic C-scan and microfocus X-ray computed tomography (μCT). Interrupted flexural tests using μCT allowed delamination propagation to be observed. In general, lower projected damage was observed at elevated temperatures, which resulted also in a possible hindrance to delamination and shear cracks propagation during impact and in a greater amount of retained flexural strength after impact.  相似文献   

2.
This paper addresses the effect of temperature on the mixed-mode interlaminar fracture toughness and fatigue delamination growth rate of a carbon-fibre/epoxy material, namely IM7/8552. Quasi-static and fatigue characterisation tests were carried out at −50 °C, 20 °C, 50 °C and 80 °C, using asymmetric cut-ply coupons. The experimental results show that temperature may have an accelerating or delaying effect on delamination growth, depending on the loading regime, i.e. either quasi-static or fatigue. Fractographic examinations were also carried out in order to assist the interpretation of the experimental data. A semi-empirical equation is introduced to describe the experimentally observed fatigue delamination growth rates at elevated temperatures.  相似文献   

3.
The relationship between translaminar fracture toughness measured at initiation and specimen initial notch root radius is investigated for the translaminar failure mode of cross-ply IM7/8552 carbon/epoxy laminates. Compact tension specimens with four sizes of notch root radii were tested; the true initiation toughness of the laminate was measured from specimens with notch tip radii of ρ ? 250 μm. Testing of specimens with larger notch root radii, ρ = 750 μm, yielded an apparent toughness that was found to be 30% higher than the true toughness of the laminate. The propagation toughness corresponding to the R-curve plateau was found not to be affected by the initial notch tip radius. Investigation of the fracture surfaces of failed specimens revealed that there is no interaction between the 0° and 90° ply failure mechanisms, and that the critical notch radius is a property intrinsic to the 0° plies of the laminate.  相似文献   

4.
Results of several different series of open hole tension tests on quasi-isotropic IM7/8552 carbon fibre/epoxy laminates with the same stacking sequence but different ply block thicknesses and numbers of sublaminates are summarised. Specimens with single 0.125 mm thick plies failed by fibre fracture, with the strength decreasing with increasing hole size. Ones with 0.5 mm thick blocks of plies all delaminated, with the failure stress increasing with increasing hole diameter, the opposite to the usual hole size effect. Specimens with 0.25 mm thick ply blocks showed intermediate response, with small ones failing by delamination, and large ones by fibre failure, and constant strength over a range of hole sizes from 1.6 to 12.7 mm diameter. The crucial role of delamination in the strength and failure mechanism in open hole tension is examined in order to explain these results and show why conventional hole size corrections may not always be applicable.  相似文献   

5.
The fracture energies of glass fibre composites with an anhydride-cured epoxy matrix modified using core–shell rubber (CSR) particles and silica nanoparticles were investigated. The quasi-isotropic laminates with a central 0°/0° ply interface were produced using resin infusion. Mode I fracture tests were performed, and scanning electron microscopy of the fracture surfaces was used to identify the toughening mechanisms.The composite toughness at initiation increased approximately linearly with increasing particle concentration, from 328 J/m2 for the control to 842 J/m2 with 15 wt% of CSR particles. All of the CSR particles cavitated, giving increased toughness by plastic void growth and shear yielding. However, the toughness of the silica-modified epoxies is lower as the literature shows that only 14% of the silica nanoparticles undergo debonding and void growth. The size of CSR particles had no influence on the composite toughness. The propagation toughness was dominated by the fibre toughening mechanisms, but the composites achieved full toughness transfer from the bulk.  相似文献   

6.
The effect of CuO nanostructure morphology on the mechanical properties of CuO/woven carbon fiber (WCF)/vinyl ester composites was investigated. The growth of CuO nanostructures embedded in the surface of woven carbon fibers (WCFs) was carried out by a two-step seed-mediated hydrothermal method; i.e., seeding and growth treatments with controlled chemical precursors. CuO nanostructural morphologies ranging from petal-like to cuboid-like nanorods (NRs) were obtained by controlling the thermal growth temperature in the hydrothermal process over a growth time of 12 h. The Cu2+/O ratio and the rate of reaction greatly influenced the formation of CuO nanostructures as self-assembled shapes on the crystal planes in the order L[0 1 0] > L[1 0 0] > L[0 0 1]. Morphological variations were analyzed by scanning electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller surface area analysis. The impact behavior, in-plane shear strength, and tensile properties of the CuO/WCF/vinyl ester composites were analyzed for different CuO NR morphologies at various growth temperatures and molar concentrations. The CuO/WCF/vinyl ester composites had improved impact energy absorption and mechanical properties because the higher specific surface area of CuO NRs grown as secondary reinforced nanomaterials on WCFs enhanced load transfer and load-bearing capacity.  相似文献   

7.
The electric heating and piezoresistive characteristics of CuO–woven carbon fiber (CuO–WCF) composite laminates were experimentally evaluated. Hybrid CuO–WCF composites were fabricated via a two-step seed-mediated hydrothermal method. The interlaminar interface between two plies of hybrid CuO–WCF/vinyl ester composite laminae was influenced by interlocked fiber–fiber cross-linking structures with CuO NRs and acted as electric heating and resistance elements. The contribution of CuO NRs (10–110 mM) to the interlaminar interface was determined by measuring the temperature profile, in order to investigate the electrical resistive heating behavior. At higher concentration of CuO NRs growth in the interlaminar region applied by 3 A, the average temperature reached to 83.55 °C at the interface area 50 × 50 mm2 and the heating efficiency was 0.133 W/°C owing to radiation and convection given by 10.5 W (3 A, 3.5 V). To investigate the piezoresistive response, the through-thickness gauge factor was observed at 0.312 during Joule heating applied by 2 A, compared with 0.639 at an ambient air temperature for CuO 110 mM concentration. The morphology and crystallinity of CuO NRs were investigated using scanning electron microscopy and X-ray diffraction analyses, respectively. The temperature dependence of hybrid CuO–WCF composite laminates’ storage moduli were analyzed using a dynamic mechanical analyzer. These characterizations showed that the interlaminar interface, combined with the high specific surface area of CuO NRs, provided the electron traps for electrical conduction around multiple WCF junctions and adjacent cross-linked laminae.  相似文献   

8.
The formation of out-of-plane ply deformation causes significant reductions in the mechanical properties of composites. In-plane fibre misalignments also cause reductions in the compressive strength, yet the origins of these defects are misunderstood. This paper presents a new mechanism for the formation of wrinkles, which is based upon the shear forces generated as a result of mismatches in the coefficient of thermal expansion of composite and tool, as well as the process of ply slippage that occurs during consolidation into radii. Using a U-shaped tool, defects in composite spars have been characterised using light microscopy, showing that the tool geometry and prepreg bridging leads to “instability sites,” which lead to wrinkles up to 750 μm in height as well as in-plane misalignment of 0° plies of up to 50°. Increasing the frictional shear stress through omission of release film prevents the formation of wrinkles, supporting the mechanism presented in this paper.  相似文献   

9.
An experimental investigation was conducted on using small flaws purposefully introduced into composite laminates to control growth of interlaminar cracks and through-thickness crack branching. Mode I crack growth specimens were used to study branching through 0°, 90° and 45° plies. The results showed that crack growth through 0° plies could be promoted by a ply gap, but this was not as controllable as combining a ply gap with a pre-crack to create a “crack branch flaw”. Crack branching through 45° plies could be controlled using crack branch flaws, and also promoted controllably using ply gaps. Crack branching through 90° plies was seen without any flaws, but was better controlled with embedded delaminations. Using these outcomes, crack branching through two quasi-isotropic laminates was demonstrated. The results have application to improved damage tolerance and fracture toughness, by taking advantage of high toughness crack growth mechanisms.  相似文献   

10.
Following the onset of damage caused by an impact load on a composite laminate structure, delaminations often form propagating outwards from the point of impact and in some cases can migrate via matrix cracks between plies as they grow. The goal of the present study is to develop an accurate finite element modeling technique for simulation of the delamination–migration phenomena in laminate impact damage processes. An experiment was devised where, under a quasi-static indentation load, an embedded delamination in the facesheet of a laminate sandwich specimen migrates via a transverse matrix crack and then continues to grow on a new ply interface. Using data from this test for validation purposes, several finite element damage simulation methods were investigated. Comparing the experimental results with those of the different models reveals certain modeling features that are important to include in a numerical simulation of delamination–migration and some that may be neglected.  相似文献   

11.
This paper reports the accelerated thermal ageing behaviors of pure epoxy resin and 3-D carbon fiber/epoxy braided composites. Specimens have been aged in air at 90 °C, 110 °C, 120 °C, 130 °C and 180 °C. Microscopy observations and attenuated total reflectance Fourier transform infrared spectrometry analyses revealed that the epoxy resin oxidative degradation only occurred within the surface regions. The surface oxidized layer protects inner resin from further oxidation. Both the resin degradation and resin stiffening caused by post-curing effects will influence the compression behaviors. For the braided composite, the matrix ageing is the main ageing mode at temperatures lower than glass transition temperatures (Tg) of the pure epoxy resin, while the fiber/matrix interface debonding could be observed at the temperatures higher than Tg, such as the temperature of 180 °C. The combination of matrix degradation and fiber/resin interface cracking leads to the continuous reduction of compressive behaviors.  相似文献   

12.
An original in situ measurement of acoustic emission (AE) was applied to monitor damage progress in discrete steps during gradual load/unload tensile tests on [±45°]7 C/PPS laminates at temperatures T > Tg, when matrix ductility is enhanced. In order to understand the specific damage behavior of such materials under severe environmental conditions, AE analysis was accompanied by microscopic observations to detect the damage initiation threshold as well as the damage mechanisms within the composite material. Once the AE source mechanisms have been separated into classes thanks to the pattern recognition software Noesis, they have been identified to match physical phenomena. Earliest cracks events occur at the crimps where the rotation of warp/weft fibres takes place, followed by the intra-bundles splitting on free surface. It is observed that the onset of intralaminar cracking and debonding is affected by the presence of matrix-rich regions between the plies, because of an extensive plasticization of the PPS matrix. The study of the specific acoustic activity of neat PPS resin specimens confirms that the local plastic deformation in matrix-rich areas contributes to delay the initiation of damage, and subsequent AE signals. Finally, AE proved to be a relevant technique to investigate damage mechanisms and to determine accurately the damage threshold in TP-based composites to be used in aeronautical applications at T > Tg.  相似文献   

13.
Relationships between microstructure and transport properties of bicrystal grain boundary (BGB) junctions were studied in cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films grown on [0 0 1]-tilt bicrystal substrates of MgO and (La, Sr)(Al, Ta)O3 with misorientation angles θGB = 3–45°. The θGB of BaFe2As2:Co BGBs were exactly transferred from those of the bicrystal substrates. No segregation of impurities was detected at the BGB junction interfaces, and the chemical compositions of the BGBs were uniform and the same as those in the bulk film regions. A transition from a strongly-coupled GB behavior to a weak-link behavior was observed in current density–voltage characteristics under self-field around θGB  9°. The critical current density decreased from (1.2–1.6) × 106 A/cm2 of the intragrain transport to (0.7–1.1) × 105 A/cm2 of θGB = 45° because supercurrent becomes more governed by Josephson current with increasing θGB.  相似文献   

14.
The concept of translaminar fracture toughness of 0° plies has enabled the development of a considerable number of ply-level numerical models for structural failure of laminated composites. Using thin-ply pre-pregs, this paper demonstrates that this translaminar toughness is not an absolute, but rather in-situ, property and depends strongly on the 0° ply-block thickness, even in situations where delamination and diffuse damage are inhibited. We used two different grades of a thin-ply carbon-epoxy system to produce four different 0° ply-block thicknesses ranging from 0.03 mm to 0.12 mm, and measured the respective translaminar fracture toughness using compact tension tests. SEM and X-ray analysis showed no delamination nor diffuse damage. Yet, the translaminar fracture toughness increased from 46 to 104 kJ/m2 (initiation), and from 49 to 160 kJ/m2 (propagation), for the thickness range above. This finding has significant implications for the development and use of ply-level numerical failure models, for structural design with thin-ply composites, and for the development of thin-ply material systems.  相似文献   

15.
The effect of stitch density (SD) on fatigue life, stiffness degradation and fatigue damage mechanisms in carbon/epoxy (T800SC/XNRH6813) stitched using Vectran thread is presented in this paper. Moderately stitched composite (SD = 0.028/mm2; ‘stitched 6 × 6’) and densely stitched composite (SD = 0.111/mm2; ‘stitched 3 × 3’) are tested and compared with composite without stitch thread (SD = 0.0; ‘unstitched’). The experiments show that the fatigue life of stitched 3 × 3 is moderately better than that of unstitched and stitched 6 × 6. Stitched 3 × 3 pattern is also able to postpone the stiffness degradation onset. The improvement of fatigue properties and postponement of stiffness degradation onset in stitched 3 × 3 is primarily due to an effective impediment of edge-delamination. Quantification of damage at various cycles and stress levels shows that stitch density primarily affects the growth rate of delamination.  相似文献   

16.
This article reviews the current state of the art in the design of traditional uni-directional fibre laminate construction; beyond the ubiquitous balanced and symmetric design. A ply termination algorithm is then employed to develop permissible tapered designs, with single-ply terminations and ply contiguity constraints, which are free from undesirable changes in mechanical coupling characteristics. More importantly however, is the fact that all tapered designs have immunity to thermal warping distortion; which include all combinations of anti-symmetric (or cross-symmetric), non-symmetric and symmetric angle- and cross-ply sub-sequence symmetries. Tapered designs are presented for laminates with fully uncoupled properties, and those possessing extension–shearing and/or bending–twisting coupling. Such designs represent typical fuselage skin thicknesses, i.e., with between (n =) 12 and 16 plies, but due consideration is also given to new fuselage design concepts with grid-stiffeners and/or geodesic stiffener arrangements, for which thinner designs (n  8) are of interest.  相似文献   

17.
Energy absorption capability and bending collapse behavior of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) short square hollow section (SHS) beam were investigated under transverse quasi-static loading. The Al SHS beam was reinforced by CFRP, and the specimen was co-cured via an autoclave curing process. Three-point bending test was performed with five different lay-up sequences and three different laminate thicknesses. Stable bending collapse accompanying plastic hinge was observed in all specimens. Individual bending collapse behaviors were different depending on the lay-up sequences. The specific energy absorbed (SEA) was improved by up to 29.6% in the Al/CFRP SHS beam specimen with a [0/+45°/90°/−45°]n lay-up sequence and laminate thickness of 1.168 mm (thickness ratio of Al: CFRP = 1: 0.87, 8 plies of prepreg) compared to the Al SHS beam. The SEA was not related with damage area of the Al/CFRP SHS beam. Finite element analysis and theoretical analysis based on Kecman’s model were performed to investigate the effect of reinforcement by CFRP on the Al SHS beam.  相似文献   

18.
The fatigue crack growth behaviour of short corner cracks in the Aluminium alloy Al 6013-T6 was investigated. The aim was to determine the crack growth rates of small corner cracks at a stress ratio of R = 0.1, R = 0.7 and R = 0.8 and to find a possible way to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T) – specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The precracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a focussed ion beam. The results of the fatigue crack growth tests with short corner cracks were compared with the long fatigue crack growth test data. The short cracks grew at ΔK-values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK-values and the same stress ratios. A model was created on the basis of constant Kmax-tests with long cracks that gives a good and conservative estimation of the short crack growth rates.  相似文献   

19.
PLA/hemp co-wrapped hybrid yarns were produced by wrapping PLA filaments around a core composed of a 400 twists/m and 25 tex hemp yarn (Cannabis sativa L) and 18 tex PLA filaments. The hemp content varied between 10 and 45 mass%, and the PLA wrapping density around the core was 150 and 250 turns/m. Composites were fabricated by compression moulding of 0/90 bidirectional prepregs, and characterised regarding porosity, mechanical strength and thermal properties by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). Mechanical tests showed that the tensile and flexural strengths of the composites markedly increased with the fibre content, reaching 59.3 and 124.2 MPa when reinforced with 45 mass% fibre, which is approximately 2 and 3.3 times higher compared to neat PLA. Impact strength of the composites decreased initially up to 10 mass% fibre; while higher fibre loading (up to 45 mass%) caused an increase in impact strength up to 26.3 kJ/m2, an improvement of about 2 times higher compared to neat PLA. The composites made from the hybrid yarn with a wrapping density of 250 turns/m showed improvements in mechanical properties, due to the lower porosity. The fractured surfaces were investigated by scanning electron microscopy to study the fibre/matrix interface.  相似文献   

20.
Poly(ethylene-co-methacrylic acid) (EMAA) as a thermally activated healing agent in a high performance, high temperature tetra-glycidyl methylene dianiline (TGDDM)/diethyl toluene diamine (DETDA) mendable epoxy composite is reported for the first time. Despite curing above EMAAs melting point (Tm = 85 °C), healing occurred by incorporating a preliminary low temperature curing step of 5 h at 80 °C, prior to cure at 177 °C. Healing occurred via the pressure delivery mechanism derived from tertiary amine catalysed surface condensation reactions between EMAA and hydroxyl groups from the epoxy resin. Healing efficiencies of 36%, 55% and 105% were achieved after heating at 150 °C, 200 °C and 230 °C respectively, but decreased rapidly with continued healing. Healing at 150 °C and 200 °C revealed significant healing despite remaining in the glassy state. In addition, EMAA enhanced mode I interlaminar fracture toughness by more than 270% for both the DETDA and 4,4-DDS networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号