首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of the damage sequence in polymer-based composite laminates during an impact event is a difficult issue. The problem can be more complex when the plies are thin. In this paper, quasi-static indentation tests were conducted on thin-ply laminates to understand qualitatively the damage mechanisms and their sequence during low-velocity impact loading. TeXtreme® plain weave plies were used with two different thicknesses, 0.08 mm and 0.16 mm (referenced as ultra-thin-ply and thin-ply, respectively), and tested under different load levels. Load–displacement curves were analyzed and the extent of damage was inspected using optical microscopy and ultrasonic technique. The results showed that the damage onset occurs earlier in thin-ply laminates. The damage onset in thin-ply laminates is matrix cracking which induces delaminations, whereas for ultra-thin-ply laminates is due to delaminations which are induced by shear forces and small amount of matrix cracking. Moreover, the fiber breakage appears earlier in ultra-thin-ply laminates.  相似文献   

2.
This paper investigates the link between acoustic emission (AE) events and the corresponding damage modes in thin-ply UD carbon/glass hybrid laminates under tensile loading. A novel configuration was investigated which has not previously been studied by AE, where the laminates were fabricated by embedding thin carbon plies between standard thickness translucent glass plies to produce progressive fragmentation of the carbon layer and delamination of the carbon/glass interface. A criterion based on amplitude and energy of the AE event values was established to identify the fragmentation failure mode. Since the glass layer was translucent, it was possible to quantitatively correlate the observed fragmentation during the tests and the AE events with high amplitude and energy values. This new method can be used as a simple and advanced tool to identify fibre fracture as well as estimate the number and sequence of damage events that are not visible e.g. in hybrid laminates with thick or non-transparent layers as well as when the damage is too small to be visually detected.  相似文献   

3.
4.
《Composites Part A》2001,32(9):1207-1215
Analytical models are suggested for prediction of impact damage initiation and growth during quasi-static response caused by large mass impactors. Comparisons with experiments are presented for different layups, geometries and boundary conditions. The critical load for delamination growth is found almost insensitive to geometry and boundary conditions. The critical energy for delamination growth is separated in bending, shear and indentation contributions. Further growth depends on the number of delaminations developing, and is in thin laminates limited by the early occurrence of penetration. Observed delamination sizes are compared with a suggested upper bound and predictions based on the observed number of delaminations.  相似文献   

5.
Drop-weight impact tests have been carried out for low fibre-volume glass-polyester laminates for a range of diameter to thickness ratios. Three damage stages were defined, ‘un-delaminated’, ‘delaminated’ and ‘fibre damage’. Analysis of the impact response using a mainly graphical methodology allowed further characterisation of the behaviour. Impact damage occurs in two stages: hidden internal delamination damage at low incident energy, and then finally perforation failure. Bending and membrane effects are significant for thin laminates. For thick laminates shear deflection, delamination and indentation damage are more important. Some form of strain-rate stiffening effects appear to be significant for bending, but not for shear-controlled deflections or when damage is present. Indentation follows the Hertzian contact law at low contact forces, but a linear contact stiffness is seen at higher forces. A fracture mechanics model describes well the onset of delamination, and gives good scaling between specimen sizes. An energy balance approach gives good correlation between impact force and incident energy. Fibre failure leading to penetration is back-face tension controlled. The complex behaviour observed shows that the impact response must be characterised before mathematical modelling might be attempted. Modelling of the un-delaminated behaviour should consider bending, shear, indentation and membrane effects.  相似文献   

6.
In this paper, flexural loading of woven carbon fabric-reinforced polymer laminates is studied using a combination of experimental material characterisation, microscopic damage analysis and numerical simulations. Mechanical behaviour of these materials was quantified by carrying out tensile and large-deflection bending tests. A substantial difference was found between the materials' tensile and flexural properties due to a size effect and stress stiffening of thin laminates. A digital image-correlation technique capable of full-field strain-measurement was used to determine in-plane shear properties of the studied materials. Optical microscopy and micro-computed tomography were employed to investigate deformation and damage mechanisms in the specimens fractured in bending. Various damage modes such as matrix cracking, delaminations, tow debonding and fibre fracture were observed in these microstructural studies. A two-dimensional finite-element (FE) model was developed to analyse the onset and propagation of inter-ply delamination and intra-ply fabric fracture as well as their coupling in the fractured specimen. The developed FE model provided a correct prediction of the material's flexural response and successfully simulated the sequence and interaction of damage modes observed experimentally.  相似文献   

7.
A new simple analytical approach for predicting all possible damage modes of Uni-Directional (UD) hybrid composites and their stress–strain response in tensile loading is proposed. To do so, the required stress level for the damage modes (fragmentation, delamination and final failure) are assessed separately. The damage process of the UD hybrid can then be predicted based on the order of the required stress for each damage mode. Using the developed analytical method, a new series of standard-thickness glass/thin-ply carbon hybrid composites was tested and a very good pseudo-ductile tensile response with 1.0% pseudo-ductile strain and no load drop until final failure was achieved. The yield stress value for the best tested layup was more than 1130 MPa. The proposed analytical method is simple, very fast to run and it gives accurate results that can be used for designing thin-ply UD hybrid laminates with the desired tensile response and for conducting further parametric studies.  相似文献   

8.
对冲击载荷下固支(纤维/聚合物)-金属层合方板和圆板的大挠度动力响应进行了理论研究。基于理想刚塑性假定和塑性极限屈服条件,建立了质量块体和爆炸冲击载荷下(纤维/聚合物)-金属层合板大挠度动力响应的理论模型,给出了固支(纤维/聚合物)-金属层合方板和圆板考虑弯曲和拉伸相互作用的大挠度响应解析解,进一步忽略弯曲的影响,得到了其动力响应的膜力解。研究结果表明,理论预测与已有实验结果吻合较好,该理论模型可以有效地预测质量块体和爆炸冲击载荷下(纤维/聚合物)-金属层合板的最大挠度。   相似文献   

9.
This paper addresses the nonlinear stress-strain response in glass fibre non-crimp fabric reinforced vinylester composite laminates subjected to in-plane tensile loading. The nonlinearity is shown to be a combination of brittle and plastic failure. It is argued that the shift from plastic to brittle behaviour in the vinylester is caused by the state of stress triaxiality caused by the interaction between fibre and vinylester. A model combining damage and plasticity is calibrated and evaluated using data from extensive experimental testing. The onset of damage is predicted using the Puck failure criterion, and the evolution of damage is calibrated from the observed softening in plies loaded in transverse tension. Shear loading beyond linear elastic response is observed to result in irreversible strains. A yield criterion is implemented for shear deformation. A strain hardening law is fitted to the stress-strain response observed in shear loaded plies. Experimental results from a selection of laminates with different layups are used to verify the numerical models. A complete set of model parameters for predicting elastic behaviour, strength and post failure softening is presented for glass fibre non-crimped fabric reinforced vinylester. The predicted behaviour from using these model parameters are shown to be in good agreement with experimental results.  相似文献   

10.
In this paper, the damage failure and behaviour of stitched composites under compression after impact (CAI) loading are experimentally investigated. This study focuses on the effect of stitch density and stitch thread thickness on the CAI strength and response of laminated composites reinforced by through-thickness stitching. Experimental findings show that stitched composites have higher CAI failure load and displacement, which corresponds to higher energy absorption during CAI damage, mainly attributed to greater energy consumption by stitch fibre rupture. The coupling relationships between CAI strength, impact energy, stitch density and stitch thread thickness are also revealed. It is understood that the effectiveness of stitching has high dependency on the applied impact energy. At low impact energy range, CAI strength is found to be solely dependent on stitch density, showing no influence of stitch thread thickness. It is however observed that stitch fibre bridging is rendered ineffective in moderately stitched laminates during compressive failure, as local buckling occurs between stitch threads, resulting in unstitched and moderately stitched laminates have similar CAI strength. The CAI strength of densely stitched laminates is much higher due to effective stitch fibre bridging and numerous stitch thread breakages. At high impact energy level, CAI strength is discovered to be intimately related to both stitch density and stitch thread thickness. Since CAI failure initiates from impact-induced delamination area, stitch fibre bridging is considerable for all specimens due to the relatively large delamination area present. Stitch threads effectively bridge the delaminated area, inhibit local buckling and suppress delamination propagation, thus leading to increased CAI strength for laminates stitched with higher stitch density and larger stitch thread thickness. Fracture mechanisms and crack bridging phenomenon, elucidated by X-ray radiography are also presented and discussed. This study reveals novel understanding on the effectiveness of stitch parameters for improving impact tolerance of stitched composites.  相似文献   

11.
Fatigue propagation of a through-the-thickness crack in thin woven glass laminates is difficult to model when using homogeneous material assumption. Crack growth depends on both the fatigue behaviour of the fibres and of the matrix, these two phenomena occurring at different time and space scales. The developed finite element model is based on the architecture of the fabric and on the fatigue behaviours of the matrix and the fibre, even if the pure resin and fibre behaviours are not used. That thus limits the physical meaning of this model. Basically, the objective of this simulation is to illustrate and to confirm proposed crack growth mechanism. The fatigue damage matrix is introduced with user spring elements that link the two fibre directions of the fabric. Fibre fatigue behaviour is based on the S-N curves. Numerical results are compared to experimental crack growth rates and observed damage in the crack tip. Relatively good agreement between predictions and experiments was found.  相似文献   

12.
This study addresses the effect of basalt fibre hybridization on the damage tolerance of carbon/epoxy laminates subjected to laser shock wave tests. Interply hybrid specimens with two different stacking sequences (sandwich-like and intercalated) were tested at different laser intensities and residual post-shock properties of the different configurations have been characterized by quasi-static three point bending tests monitored by acoustic emission. Results indicate that the best compromise in terms of both quasi-static properties (2% reduction in flexural strength compared to all carbon laminates) and damage tolerance appears to be the sandwich-like structure with basalt fibre skins. In particular, this configuration exhibited the highest damage tolerance among the hybrids, with a percent decrease in flexural strength of about 5% compared to 15% in the case of all carbon laminates. Damage induced by laser shock testing in carbon-basalt woven fabric/epoxy composites is mainly inter-ply delamination. This study also highlights the tougher behaviour of basalt plies in response to a sudden application of load compared to carbon layers with a favourable hybridization effect.  相似文献   

13.
Composite laminates with thin-ply layers are expected to exhibit superior damage resistance to the standard composite laminates. This study investigated the damage characteristics of carbon fiber/toughened epoxy thin-ply laminates subjected to transverse loadings. Quasi-isotropic laminates were prepared using both standard prepregs and thin-ply prepregs in order to examine the effect of ply thickness on the damage accumulation processes. Clear difference on damage accumulation process between standard laminates and thin-ply laminates was identified; fiber fractures were susceptible to formation in thin-ply laminates. Finally, the reason of the difference on damage process was investigated using finite element analyses, and it was clarified that the accumulated delamination position has a significant effect on the fiber fractures during the indentation.  相似文献   

14.
To extend the predictive capability of existing crack growth models for fibre metal laminates under constant amplitude fatigue loading to variable-amplitude loading, further research on variable-amplitude fatigue mechanisms in fibre metal laminates is necessary. In response to this need, an experimental study into the effects of multiple overloads, underloads and various block-loading sequences on crack growth in the fibre metal laminate Glare was investigated. Crack growth retardation effects were observed in the tests; however, the magnitude of these effects was lower than seen in monolithic aluminium because of fibre bridging. As a result, predictions of the observed behaviour were attempted using an existing constant-amplitude fatigue crack growth model for Glare in combination with a linear damage accumulation law.  相似文献   

15.
This paper reports on the actual and virtual low velocity impact response of carbon fibre composite laminates. It utilises the contribution of through-thickness stresses, in the prediction of the onset of internal damage created by this type impact scenario.The paper focuses on the damage imparted by the flat nose impactor since this induces a different type of damage and structural response compared to that of the standard test method of using a round nose impactor.Vulnerability of the fibrous composites to vertical drop-weight impact can result in premature failure which is a major concern in their widespread usage. The topic has been of intense research to design more damage tolerant and resistant materials. However, due to materials’ anisotropic and three-dimensional nature and complicated damage mechanisms no standard model could have been achieved. Designers predict consequences of a local impact within the global structural context without full-scale testing.Majority of the existing simulation models neglect through-thickness stresses that are regarded as the major cause of catastrophic failures. Efficient and reliable investigations are required to reduce testing and include through-thickness stresses. Drop-weight impact simulation models were developed herein using ABAQUS™ software. Simulations were carried out to compute in-plane stresses subjected to flat and round nose impacts on laminates of differing thicknesses. These stresses once computed were numerically integrated employing the equilibrium equations to efficiently predict through-thickness stresses. The predicted stresses were then utilised in failure criteria to quantify the coupled and embedded damage. This provides a quick insight into the status and contribution of through-thickness stresses in failure predictions. The computed values were compared to the experimental results and found to be in good agreement.  相似文献   

16.
The subject of this paper is numerical prediction of bird strike induced damage in real aeronautical structures using highly detailed finite element models and modern numerical approaches. Due to the complexity of today’s aeronautical structures, numerical damage prediction methods have to be able to take into account various failure and degradation models of different materials. A continuum damage mechanics approach has been employed to simulate failure initiation and damage evolution in unidirectional composite laminates. Hashin’s failure initiation criteria have been employed in order to be able to distinct between four ply failure modes. The problem of soft body impacts has been tackled by applying the Coupled Eulerian Lagrangian technique, thereby avoiding numerical difficulties associated with extensive mesh distortion. This improvement in impactor deformation modelling resulted in a more realistic behaviour of bird material during impact. Numerical geometrical and material nonlinear transient dynamic analyses have been performed using Abaqus/Explicit. The main focus of the work presented in this paper is the application of the damage prediction procedure in damage assessment of bird impact on a typical large airliner inboard flap structure. Due to the high cost of gas-gun testing of aircraft components, experimental testing on the real flap structure could not have been performed. In order to evaluate the accuracy of the presented method, the bird and composite damage model have been validated against experimental data available in the literature.  相似文献   

17.
通过实验和数值分析相结合的方法开展了褶皱缺陷对L型复合材料层合板承载能力和失效过程影响的研究。实验方面,通过“横条法”人为引入褶皱缺陷,制备了含两种缺陷大小的L型层合板,研究了其在弯曲载荷作用下的承载能力和损伤扩展形式,并与无缺陷L型层合板进行对比分析。数值分析方面,基于3D Hashin失效准则的渐进损伤失效模型, 研究其失效过程中应力分布特征和失效模式,探求褶皱缺陷对L型层合板失效行为的影响机制。实验结果表明,褶皱缺陷会显著降低曲梁的承载能力,并使分层损伤演化的空间扩展特征从无褶皱试样的逐层扩展转变为褶皱区域的聚集式扩展。数值预测与实验现象吻合,并共同表明褶皱处横向应力和面法线应力的集中是导致结构提前失效的主导因素,且褶皱区域的应力集中改变了损伤过程中应力逐层重分配的趋势,导致含褶皱试样呈现出聚集式扩展的破坏特征。该工作可扩展应用于含褶皱缺陷L型层合板的安全性能评估及损伤容限设计。   相似文献   

18.
This paper is the follow-up on the previous work by the authors on the experimental evaluation of the impact damage resistance of laminates with dispersed stacking sequences. The current work focuses on the evaluation of the impact performance of the tested laminates by innovative numerical methods.Constitutive models which take into account the physical progressive failure behaviour of fibres, matrix, and interfaces between plies were implemented in an explicit finite element method and used in the simulation of low-velocity impact events on composite laminates. The computational effort resulted in reliable predictions of the impact dynamics, impact footprint, locus and size of delaminations, matrix cracks and fibre damage, as well as the amount of energy dissipated through delaminations, intraply damage and friction. The accuracy achieved with this method increases the reliability of numerical methods in the simulation of impact loads enabling the reduction of the time and costs associated with mechanical testing.  相似文献   

19.
《Composites Part A》2002,33(11):1487-1495
Low velocity impacts to fibre reinforced plastic composites cause a pattern of damage consisting in general of delamination, fibre breakage and matrix cracking. Such damage is accidental and may go unnoticed; therefore composite structures must be designed assuming impact damage exists. Previous work on flat composite laminates has resulted in a reasonable understanding of the mechanisms of compressive strength reduction. There are, however, many instances where curved laminates are used in structures where impact is likely. Furthermore, due to the mechanisms of strength reduction, it may be expected that curvature would have a significant effect on the behaviour of the laminates.The work described here consists of experimental measurement of the post-impact compressive strength of curved GFRP laminates. The laminates were of 8 plies of 0.3 mm thick pre-impregnated glass fibre/epoxy tape in a (0, ±45, 0°)s lay-up. Each laminate was 200 mm in length by 50 mm wide with the plane of curvature normal to the length. Laminates were impacted on the convex surface of the laminate by dropping a steel mass from 1 m vertically above it.Impacted laminates were loaded in compression and the out-of-plane displacements of the top and bottom surfaces were recorded. Final failure was typically due to fibre breakage occurring through the centre of the impacted area of the laminate. Possible differences in the impact response, and measurable differences in the sizes of the impact damage area, were found to arise from these curvatures, and differences were observed in their post-impact buckling behaviour. However, perhaps unexpectedly, the post-impact compressive strength for a curved laminate was found to be similar to that for a flat laminate. The failure loads for the impact damage laminates are shown to be comparable with those for laminates containing artificial delaminations.  相似文献   

20.
Voids in composites have been a perennial problem, since the amount of porosities is deemed to bear a strong relation with the degradation of service performance of laminates. On the other side, the effect of porosity on impact resistance of laminates is often dependant on their distribution in the material, especially with respect to the location and severity of impact damage in it. In this study, the influence of void content percentage on the residual flexural strength of CFRP laminates impacted at very low energy, in the region of 1 J, at different temperatures was investigated. Laminates were fabricated using 16 layers of Cycom 977-2 prepreg material in a [0/90/90/0]2S layup with different void contents in the range from 1 to 7% by varying cure conditions. Low velocity impact tests were conducted on three categories of laminates, defined as high pressure cured, low pressure debulked and low pressure non debulked respectively, each of these at ambient temperature (30 °C) and elevated temperatures of 50, 70 and 90 °C. Post-impact residual flexural strength of the laminates was measured by three-point bending tests followed in real time by acoustic emission (AE) monitoring. From the separation of frequency bands and of their amplitude levels, identification of the different failure modes, such as matrix cracking, delamination and fibre failure, was performed. The results indicated that in the case of very low impact energy high porosity laminates, such as non debulked ones, may possess slightly higher residual flexural strength and an enhanced delamination resistance with respect to debulked ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号