首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ti3SiC2 filler has been introduced into SiCf/SiC composites by precursor infiltration and pyrolysis (PIP) process to optimize the dielectric properties for electromagnetic interference (EMI) shielding applications in the temperatures of 25–600 °C at 8.2–12.4 GHz. Results indicate that the flexural strength of SiCf/SiC composites is improved from 217 MPa to 295 MPa after incorporating the filler. Both the complex permittivity and tan δ of the composites show obvious temperature-dependent behavior and increase with the increasing temperatures. The absorption, reflection and total shielding effectiveness of the composites with Ti3SiC2 filler are enhanced from 13 dB, 7 dB and 20 dB to 24 dB, 21 dB and 45 dB respectively with the temperatures increase from 25 °C to 600 °C. The mechanisms for the corresponding enhancements are also proposed. The superior absorption shielding effectiveness is the dominant EMI shielding mechanism. The optimized EMI shielding properties suggest their potentials for the future shielding applications at temperatures from 25 °C to 600 °C.  相似文献   

2.
Tetrapod-shaped zinc oxide (T-ZnO) whiskers and boron nitride (BN) flakes were employed to improve the thermal conductivity of phenolic formaldehyde resin (PF). A striking synergistic effect on thermal conductivity of PF was achieved. The in-plane thermal conductivity of the PF composite is as high as 1.96 W m−1 K−1 with 30 wt.% BN and 30 wt.% T-ZnO, which is 6.8 times higher than that of neat PF, while its electrical insulation is maintained. With 30 wt.% BN and 30 wt.% T-ZnO, the flexural strength of the composite is 312.9% higher than that of neat PF, and 56.2% higher that of the PF composite with 60 wt.% BN. The elongation at break is also improved by 51.8% in comparison with that of the composite with 60 wt.% BN. Such a synergistic effect results from the bridging of T-ZnO whiskers between BN flakes facilitating the formation of effective thermal conductance network within PF matrix.  相似文献   

3.
SiCp/TiNif/Al composite with 20 Vol.% TiNi fibers were fabricated by pressure infiltration method. The effect of volume fraction of SiC particle on the mechanical properties and damping capacity of the composite were studied. Four different volume fractions of SiC particle in the composite were 0%, 5%, 20% and 35% respectively. The microstructure and damping capacity of the composites was studied by SEM and DMA respectively. As the gliding of dislocation in the Al matrix was hindered by SiC particle, the yield strength and elastic modulus of the composites increased, while the elongation decreased with the increase in volume fraction of SiC particle. Furthermore, the damping capacity of the composites at room temperature was decreased when the mount of strain was more than 1 × 10−4. In the heating process, the damping peak at the temperature of 135 °C was attributed to the reverse martensitic transformation from B19′ to B2 in the TiNi fibers.  相似文献   

4.
Carbon nanotubes (CNTs) have been widely used as mechanical reinforcement agents of composites. However, their aggregations, weak interfacial interaction with polymer, as well as high electrical conductivity limit their use in some especial applications. In this paper, the silicon oxide (SiO2)-coated (CNT@SiO2) core–shell hybrids with different SiO2 thickness were prepared and employed to reinforce glass fibre-reinforced bismaleimide–triazine (BT) resin (GFRBT) composites. The results indicated the mechanical properties, including tensile strength and Young’s modulus increased with the increase of SiO2 thickness and CNT@SiO2 loading. Such enhanced mechanical properties were mainly attributed to the intrinsically nature of CNTs, homogeneous dispersion of the hybrids, as well as improved interfacial interaction. Meanwhile, the composites remained high electrical insulation (9.63 × 1012 Ω cm) due to the existence of SiO2 layer on CNT surface. This study will guide the design of functionalized CNTs and the construction of high-performance composites.  相似文献   

5.
Due to the growing needs of thermal management in modern electronics, polyimide-based (PI) composites are increasingly demanded in thermal interface materials (TIMs). Graphene woven fabrics (GWFs) with a mesh structure have been prepared by chemical vapor deposition and used as thermally conductive filler. With the incorporation of 10-layer GWFs laminates (approximate 12 wt%), the in-plane thermal conductivity of GWFs/PI composite films achieves 3.73 W/mK, with a thermal conductivity enhancement of 1418% compared to neat PI. However, the out-of-plane thermal conductivity of the composites is only 0.41 W/mK. The in-plane thermal conductivity exceeds its out-of plane counterpart by over 9 times, indicating a highly anisotropic thermal conduction of GWFs/PI composites. The thermal anisotropy and the enhanced in-plane thermal conductivity can be attributed to the layer-by-layer stacked GWFs network in PI matrix. Thus, the GWFs-reinforced polyimide films are promising for use as an efficient heat spreader for electronic cooling applications.  相似文献   

6.
Polyimide/reduced graphene oxide (PI/r-GO) core–shell structured microspheres were fabricated by in-situ reduction of graphene oxide (GO), which was coated on the surface of PI microspheres via hydrogen bonding and π–π stacking interaction. The highly ordered 3D core–shell structure of PI/r-GO microspheres with graphene shell thickness of 3 nm was well characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM) and Raman spectra. The glass transition temperature (Tg) of PI/r-GO microspheres was slightly increased because of the interaction of r-GO and PI matrix while the temperature at 5% weight loss (T5%) of PI/r-GO microspheres was decreased due to the side effect of reductant hydrazine hydrate. The PI/r-GO nanocomposites exhibited highly electrical conductivity with percolation threshold of 0.15 vol% and ultimate conductivity of 1.4 × 10−2 S/m. Besides, the thermal conductivity of PI/r-GO nanocomposites with 2% weight content of r-GO could reach up to 0.26 W/m K.  相似文献   

7.
Silica coated multiwalled carbon nanotubes (SiO2@MWCNTs) with different coating thicknesses of ∼4 nm, 30–50 nm, and 70–90 nm were synthesized by a sol–gel method and compounded with polyurethane (PU). The effects of SiO2@MWCNTs on the electrical properties and thermal conductivity of the resulting PU/SiO2@MWCNT composites were investigated. The SiO2 coating maintained the high electrical resistivity of pure PU. Meanwhile, incorporating 0.5, 0.75 and 1.0 wt% SiO2@MWCNT (70–90 nm) into PU, produced thermal conductivity values of 0.287, 0.289 and 0.310 W/mK, respectively, representing increases of 62.1%, 63.3% and 75.1%. The thermal conductivity of PU/SiO2@MWCNT composites was also increased by increasing the thickness of the SiO2 coating.  相似文献   

8.
Heat treatment is a relatively benign modification method that is growing as an industrial process to improve hygroscopicity, dimensional stability and biological resistance of lignocellulosic fillers. There also has been increased interest in the use of lignocellulosic fillers in numerous automotive applications. This study investigated the influence of untreated and heat treated wood fillers on the mechanical and rheological properties of wood filled nylon 6 composites for possible under-the-hood applications in the automobile industry where conditions are too severe for commodity plastics to withstand. In this study, exposure of wood to high temperatures (212 °C for 8 h) improved the thermal stability and crystallinity of wood. Heat treated pine and maple filled nylon 6 composites (at 20 wt.% loading) had higher tensile strengths among all formulations and increased tensile strength by 109% and 106% compared to neat nylon 6, respectively. Flexural modulus of elasticity (FMOE) of the neat nylon 6 was 2.34 GPa. The FMOE increased by 101% and 82% with the addition of 30 wt.% heat treated pine and 20 wt.% heat treated maple, where it reached maximum values of 4.71 GPa and 4.27 GPa, respectively. The rheological properties of the composites correlated with the crystallinity of wood fillers after the heat treatment. Wood fillers with high crystallinity after heat treatment contributed to a higher storage modulus, complex viscosity and steady shear viscosity and low loss factor in the composites. This result suggests that heat treatment substantially affects the mechanical and rheological properties of wood filled nylon 6 composites. The mechanical properties and thermogravimetric analysis indicated that the heat treated wood did not show significant thermal degradation under 250 °C, suggesting that the wood-filled nylon composites could be especially relevant in thermally challenging areas such as the manufacture of under-the-hood automobile components.  相似文献   

9.
Rapidly increasing packaging density of electronic devices puts forward higher requirements for thermal conductivity of glass fibers reinforced polymer (GFRP) composites, which are commonly used as substrates in printed circuit board. Interface between fillers and polymer matrix has long been playing an important role in affecting thermal conductivity. In this paper, the effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled GFRP composites was evaluated. The results indicated that amino groups-Al2O3 was demonstrated to be effective filler to fabricate thermally conductive GFPR composite (1.07 W/m K), compared with epoxy group and graphene oxide functionalized Al2O3. It was determined that the strong adhesion at the interface and homogeneous dispersion of filler particles were the key factors. Moreover, the effect of interfacial state on dielectric and thermomechanical properties of GFRP composites was also discussed. This research provides an efficient way to develop high-performance GFRP composites with high thermal conductivity for integrated circuit packaging applications.  相似文献   

10.
Bismaleimide–triazine (BT) resins have received a great deal of attention in microelectronics due to its excellent thermal stability and good retention of mechanical properties. Thereafter, developing BT based composites with high mechanical strength, thermal conductivity and dielectric property simultaneously are highly desirable. In this study, one hybrid fiber of Al2O3 nanoparticle (200 nm) supported on polyimide fiber (Al2O3@PI) with core–shell structure was introduced into BT resin to prepare promising Al2O3@PI–BT composite. The results indicated that the resultant composites possessed high Young’s modulus of 4.06 GPa, low dielectric constant (3.38–3.50, 100 kHz) and dielectric loss (0.0102–0.0107, 100 kHz). The Al2O3@PI hybrid film was also conductive to improve thermal stability (Td5% up to 371 °C), in-plane thermal conductivity (increased by 295% compared to that of the pure BT resin). Furthermore, the Al2O3@PI–BT composite were employed to fabricate a printed circuit substrate, on which a frequency “flasher” circuit and electrical components worked well.  相似文献   

11.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

12.
This paper reports a new approach to enhance the through-thickness thermal conductivity of laminated carbon fabric reinforced composites by using nanoscale and microscale silver particles in combination to create heterogeneously structured continuous through-thickness thermal conducting paths. High conductivity of 6.62 W/(m K) with a 5.1 v% silver volume fraction can be achieved by incorporating these nanoscale and microscale silver particles in EWC-300X/Epon862 composite. Silver flakes were distributed within the inter-tow area, while nanoscale silver particles penetrated into the fiber tows. The combination of different sizes of silver fillers is able to effectively form continuous through-thickness conduction paths penetrating fiber tows and bridging the large inter-tow resin rich areas. Positive hybrid effects to thermal conductivity were found in IM7/EWC300X/sliver particle hybrid composites. In addition, microscale fillers in resin rich areas showed less impact on tensile performance than nanoscale particles applied directly on fiber surface.  相似文献   

13.
Poly(lactic acid) composites filled with algae industrial by-product were prepared using melt-mixing process at filler weight fractions of 20, 30 and 40 wt%. Algae by-products were after the extraction of alginate (AW) and mixed with diatomaceous earth (DE). The composition and morphology of both fillers were analysed. Composites’ mechanical properties and thermal degradation were investigated as a function of filler type and content. The addition of DE-filler at 40 wt% resulted in the increase of Young’s modulus by 20% compared to the neat PLA. The presence of small DE particles improved stress distribution and led to stronger composites as compared with AW-filled. Cold crystallization of PLA was induced by small algae particles. Thermal degradation of all composites started at lower temperatures compared with neat PLA. A glow-wire test was carried out to evaluate the effect of inorganic matter on the ignition of the material.  相似文献   

14.
Nano/micrometer hybrids are prepared by chemical vapor deposition growth of carbon nanotubes (CNTs) on SiC, Al2O3 and graphene nanoplatelet (GNP). The mechanical and self-sensing behaviors of the hybrids reinforced epoxy composites are found to be highly dependent on CNT aspect ratio (AR), organization and substrates. The CNT–GNP hybrids exhibit the most significant reinforcing effectiveness, among the three hybrids with AR1200. During tensile loading, the in situ electrical resistance of the CNT–GNP/epoxy and the CNT–SiC/epoxy composites gradually increases to a maximum value and then decreases, which is remarkably different from the monotonic increase in the CNT–Al2O3/epoxy composites. However, the CNT–Al2O3 with increased AR  2000 endows the similar resistance change as the other two hybrids. Besides, when AR < 3200, the tensile modulus and strength of the CNT–Al2O3/epoxy composites gradually increase with AR. The interrelationship between the hybrid structure and the mechanical and self-sensing behaviors of the composites are analyzed.  相似文献   

15.
Polymeric composites with high thermal conductivity, high dielectric permittivity but low dissipation factor have wide important applications in electronic and electrical industry. In this study, three phases composites consisting of poly(vinylidene fluoride) (PVDF), Al nanoparticles and β-silicon carbide whiskers (β-SiCw) were prepared. The thermal conductivity, morphological and dielectric properties of the composites were investigated. The results indicate that the addition of 12 vol% β-SiCw not only improves the thermal conductivity of Al/PVDF from 1.57 to 2.1 W/m K, but also remarkably increases the dielectric constant from 46 to 330 at 100 Hz, whereas the dielectric loss of the composites still remain at relatively low levels similar to that of Al/PVDF at a wider frequency range from 10−1 Hz to 107 Hz. With further increasing the β-SiCw loading to 20 vol%, the thermal conductivity and dielectric constant of the composites continue to increase, whereas both the dielectric loss and conductivity also rise rapidly.  相似文献   

16.
This work prepares (3-aminopropyl) trimethoxysilane (APTMS)-functionalized reduced graphene oxide (APTMS-rGO)/polyimide (PI) composite (APTMS-rGO/PI) through in-situ polymerization. NH2-functionalized rGO coupled by APTMS demonstrates the good reinforced efficiency in mechanical and thermal properties, which is ascribed to the covalent-functionalized PI matrix by APTMS-rGO sheets. The uniform dispersion of APTMS-rGO increases the glass transition temperature (Tg) and the thermal decomposition temperature (Td), exhibiting 21.7 °C and 44 °C improvements, respectively. The tensile strength of the composites with 0.3 wt% APTMS-rGO is 31% higher than that of neat PI, and Young’s modulus is 35% higher than that of neat PI. Raman spectroscopy show the obvious G band shift, and also clearly demonstrates the enhanced interfacial interaction between rGO nanofillers and PI matrix. The high mechanical property of the APTMS-rGO/PI composites is attributed to the covalent functionalized GO by NH2 groups and its good dispersion in comparison with GO.  相似文献   

17.
Aramid fibers reinforced silica aerogel composites (AF/aerogels) for thermal insulation were prepared successfully under ambient pressure drying. The microstructure showed that the aramid fibers were inlaid in the aerogel matrix, acting as the supporting skeletons, to strengthen the aerogel matrix. FTIR revealed AF/aerogels was physical combination between aramid fibers and aerogel matrix without chemical bonds. The as prepared AF/aerogels possessed extremely low thermal conductivity of 0.0227 ± 0.0007 W m−1 K−1 with the fiber content ranging from 1.5% to 6.6%. Due to the softness, low density and remarkable mechanical strength of aramid fibers and the layered structure of the fiber distribution, the AF/aerogels presented nice elasticity and flexibility. TG–DSC indicated the thermal stability reaching approximately 290 °C, can meet the general usage conditions, which was mainly depended on the pure silica aerogels. From mentioned above, AF/aerogels present huge application prospects in heat preservation field, especially in piping insulation.  相似文献   

18.
Aluminum oxide and aluminum nitride with different sizes were used alone or in combination to prepare thermally conductive polymer composites. The composites were categorized into two systems, one including composites filled with large-sized aluminum nitride and small-sized aluminum oxide particles, and the other including composites filled with large-sized aluminum oxide and small-sized aluminum nitride. The use of these hybrid fillers was found to be effective for increasing the thermal conductivity of the composite, which was probably due to the enhanced connectivity offered by the structuring filler. At a total filler content of 58.4 vol.%, the maximum values of both thermal conductivities in the two systems were 3.402 W/mK and 2.842 W/mK, respectively, when the volume ratio of large particles to small particles was 7:3. This result was represented when the composite was filled with the maximum packing density and the minimum surface area at the same volume content. As such, the proposed thermal model predicted thermal conductivity in good agreement with experimental values.  相似文献   

19.
The hybrid filler of hollow glass microspheres (HGM) and nitride particles was filled into low-density polyethylene (LDPE) matrix via powder mixing and then hot pressing technology to obtain the composites with higher thermal conductivity as well as lower dielectric constant (Dk) and loss (Df). The effects of surface modification of nitride particles and HGMs as well as volume ratio between them on the thermal conductivity and dielectric properties at 1 MHz of the composites were first investigated. The results indicate that the surface modification of the filler has a beneficial effect on thermal conductivity and dielectric properties of the composites due to the good interfacial adhesion between the filler and matrix. An optimal volume ratio of nitride particles to HGMs of 1:1 is determined on the basis of overall performance of the composites. The thermal conductivity as well as dielectric properties at 1 MHz and microwave frequency of the composites made from surface-modified fillers with the optimal nitride to HGM volume ratio were investigated as a function of the total volume fraction of hybrid filler. It is found that the thermal conductivity increases with filler volume fraction, and it is mainly related to the type of nitride particle other than HGM. The Dk values at 1 MHz and microwave frequency show an increasing trend with filler volume fraction and depend largely on the types of both nitride particles and HGMs. The Df values at 1 MHz or quality factor (Q × f) at microwave frequency show an increasing or decreasing trend with filler volume fraction and also depend on the types of both nitride particle and HGM. Finally, optimal type of HGM and nitride particles as well as corresponding thermal conductivity and dielectric properties is obtained. SEM observations show that the hybrid filler particles are agglomerated around the LDPE matrix particles, and within the agglomerates the smaller-sized nitride particles in the hybrid filler can easily form thermally conductive networks to make the composites with high thermal conductivity. At the same time, the increase of the value Dk of the composites is restricted due to the presence of HGMs.  相似文献   

20.
Polyhedral oligomeric silsesquioxane grafting thermally conductive silicon carbide particle (POSS-g-SiCp) fillers, are performed to fabricate highly thermally conductive ultra high molecular weight polyethylene (UHMWPE) composites combining with optimal dielectric properties and excellent thermal stabilities, via mechanical ball milling followed by hot-pressing method. The POSS-g-SiCp/UHMWPE composite with 40 wt% POSS-g-SiCp exhibits relative higher thermal conductivity, lower dielectric constant and more excellent thermal stability, the corresponding thermally conductive coefficient of 1.135 W/mK, the dielectric constant of 3.22, and the 5 wt% thermal weight loss temperature of 423 °C, which holds potential for packaging and thermal management in microelectronic devices. Agari’s semi-empirical model fitting reveals POSS-g-SiCp fillers have strong ability to form continuous thermally conductive networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号