首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
The phase stabilities in the(1−x)Ba(Zn1/3Ta2/3)O3 (BZT)-xBaZrO3(BZ)system have been investigated using samples prepared by the mixed oxide method. The substitution of Zr4+destabilizes the 1:2 cation ordering in BZT and pro-motes the formation of a cubic, 1:1 ordered structure with a doubled perovskite repeat. The homogeneity range of the 1:1 phase extends from x = 0.04 to approximately x = 0.25; substitutions beyond this range stabilize a disordered perovskite. The limits of stability of the 1:1 ordering coin-cide with compositions previously found to exhibit anoma-lies in their dielectric loss. The range of homogeneity is consistent with a "random layer" model for the 1:1 ordered "Ba{β';1/2β1/2}O3" structure. In this model the B× positions are assumed to be occupied exclusively by Ta5+, and the b× sites by a random distribution of Zn2+, Zr4+, and the remaining Ta 5+ cations. The validity of the model, where the ordered solid solutions can be represented by Ba{[Zn2− y /3Ta(1−2 y )/3Zr y ]1/2[Ta]1/2}O3(y =2x)was con-firmed by Rietveld refinements conducted using data col-lected with a synchrotron X-ray source.  相似文献   

2.
A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1− x )Ba3(ZnNb2)O9−( x )Ba3W2O9 system up to 2 mol% substitution ( x =0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1− x x )1/3(Nb1− x W x )2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x =0.006 comprised large ordered domains with a high lattice distortion ( c/a =1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors ( Q × f =1 18 000 at 8 GHz) reported for a niobate-based perovskite.  相似文献   

3.
4.
Ca(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramic cylinders with the same diameter were bonded by adhesive with low dielectric loss to yield the layered dielectric resonators, and the microwave dielectric characteristics were evaluated with TE01δ mode. With increasing the Ba(Zn1/3Nb2/3)O3 thickness fraction, the resonant frequency ( f 0) decreased, while the effective dielectric constant (ɛ r ,eff) and temperature coefficient of resonant frequency (τ f ) increased. Good microwave dielectric characteristics were attained for the samples with the Ba(Zn1/3Nb2/3)O3 thickness fraction of 0.5: ɛ r ,eff=34.33, Q × f =57 930 GHz and τ f =2.6 ppm/°C. Finite-element method was used to predict the microwave dielectric characteristics of the layered resonators and good agreements were attained between the experimental results and predicted ones. Also, both experiment and finite-element analysis indicated that the effects of the adhesive on f 0, ɛ r ,eff, and τ f were slight, while that on Q × f value was significant.  相似文献   

5.
A complete range of perovskite solid solutions can be formed in the (1 − x )Ba(Mg1/3Nb2/3)O3- x La(Mg2/3Nb1/3)O3 (BMN-LMN) pseudobinary system. While pure BMN adopts a 1:2 cation ordered structure, 1:1 ordered phases are stabilized for 0.05 ≤ x ≤ 1.0. Dark-field TEM images indicate that the La-doped solid solutions are comprised of large 1:1 ordered domains and no evidence was found for a phase-separated structure. This observation coupled with the systematic variations in the intensities of the supercell reflections supports a charge-balanced "random-site" model for the 1:1 ordering. The substitution of La also induces a transformation from a negative to positive temperature coefficient of capacitance in the region 0.25 ≤ x ≤ 0.5.  相似文献   

6.
The dielectric properties of the Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 system were determined. Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 has a complex perovskite structure, a high dielectric constant, a low dielectric loss, and a low temperature coefficient of the resonant frequency. A solid-solution ceramic with 0.7Ba (Co1/3 Nb2/3)O3·0.3 Ba(Zn1/3Nb2/3)O3 has a dielectric constant of K=33.5, Q=11000 at 6.5 GHz, and a temperature coefficient of the resonant frequency of τf=0 ppm/°C. The temperature coefficient of resonant frequency can be varied by changing the composition. The Q values of the ceramics can be increased by annealing in a nitrogen atmosphere. These ceramics can be used for resonant elements and stabilized oscillators.  相似文献   

7.
Phase formation and dielectric properties of the compositions in the system [Pb(Fe1/2Nb1/2)O3]1_ x –[Pb(Zn1/3Nb2/3)O3] x were investigated as possible materials for multilayer ceramic capacitors. The formation of the phase with perovskite structure and dielectric properties of ceramics at room temperature in the entire composition range are presented. The undesirable pyrochlore phase can be suppressed up to x = 0.6 by adopting calcination of B-site oxides, followed by reaction with PbO. Compositions in the single-phase range can be sintered at less than 1000°C.  相似文献   

8.
The 1:2 ordering in Ba(Ni1/3Nb2/3)O ceramics sintered at 1350-1500°C has been investigated by using XRD and Raman spectroscopy. Both of the techniques show that the degree of the 1:2 ordering decreases as the sintering temperature increases. However, XRD discerns the 1:2 ordering only for the samples sintered at 1350-1400°C, whereas Raman spectroscopy discerns the 1:2 ordering for all the samples. Similar results have been obtained for Ba(Zn1/3Nb2/3)O3 ceramics, where only the temperature range is slightly different. It is demonstrated that Raman spectroscopy can be a useful tool for probing of the 1:2 ordering in the A(B'II1/3B"V2/3)O3-type complex perovskite compounds.  相似文献   

9.
High Q ceramics of Ba3W2O9 (BW)-substituted Ba(Zn1/3Nb2/3) O3 (BZN) were prepared with a zero τf through the partial substitution of Zn by Ni and Co. The small concentrations of B-site vacancies introduced by the substitution of BW accelerated the kinetics and stability of the cation ordering and lowered the sintering temperature. Dense, zero τf, ordered solid solutions such as 0.99Ba(Zn0.3Co0.7)1/3Nb2/3O3–0.01BW with ɛr=34.4 and Q × f =82 000 at ∼8 GHz could be obtained after sintering at 1380°C for 5 h and annealing at 1300°C for 24 h. Partially ordered ceramics in the Zn/Co and Zn/Ni solid solutions show a large gradient in the ordering throughout the pellets, which produces a resonant frequency dependence of their Q × f value. The ordering gradient is associated with the increased constraints on the growth of the 1:2 ordered structure within the interior of larger and thicker pellets and can be minimized by extended annealing.  相似文献   

10.
The order-disorder phase formation of the complex perovskite compounds Ba(Ni1/3Nb2/3)O3 (BNN) and Ba(Zn1/3-Nb2/3)O3 (BZN) was investigated using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The BNN and BZN samples were sintered over a temperature range of 1200° to 1500°C in air for 2 h. X-ray diffraction and transmission electron microscopy showed that these compounds exhibited a 1:2 ordering on the B-site within a narrow temperature range. When BNN and BZN were sintered above 1400° and 1350°C, respectively, a liquid phase formed in the grain boundary which was accompanied by disordering. The composition of the liquid phase resembled that of pyrochlore, with a small amount of nickel for BNN or zinc for BZN. The disordering with the formation of the liquid phase was attributed to the increase in defect concentration.  相似文献   

11.
Ceramic dielectrics which have been fabricated in the Pb(Mg1/3 Nb2/3)O3:PbTiO3:Ba(Zn1/3Nb2/3)O3 composition system are shown to exhibit two distinct dielectric maxima, both of which show the characteristic loss spectra of ferroelectrics with diffuse phase transitions. The height of the individual maxima can be controlled by the Zn:Mg ratio in the starting material and, in suitably chosen compositions, a wide range of almost temperature-independent high dielectric permittivity is possible. These dielectrics show strong electrostrictive deformations under high electric fields but the electrostrictive strain is much less temperature-sensitive than in other relaxors.  相似文献   

12.
The structure and temperature dependence of complex lead perovskite dielectrics were investigated for the system (1 − x )Pb(Yb1/2Ta1/2)O3– x Pb(Lu1/2Nb1/2)O3. Superlattice reflections for the compositions 0.8 < x < 1.0 were observed by X-ray diffractometry, and the temperature-composition dielectric-state diagram was determined. In the present study, the disordered middle composition, with 0.2 < x < 0.8, showed a diffuse paraelectric–ferroelectric phase transition, whereas the ordered end compositions, with 0 ≤ x < 0.2 and 0.8 < x ≤ 1.0, revealed successive sharp paraelectric–antiferroelectric and weak antiferroelectric–ferroelectric phase transitions. The dielectric state was confirmed by examining the variation of polarization ( P ) with electric field ( E ).  相似文献   

13.
The crystal structure of lanthanum-modified lead magnesium niobates having composition (Pb1− x La x ) (Mg(1+ x )/3-Nb(2− x )/3)O3 with X = 0 to 1 was investigated by X-ray powder diffraction. It was found that the fundamental reflections from perovskite structure remain in the whole range of composition. The superlattice reflections from the A(B'1/2-B"1/2)O3 ordered structure are also well preserved for La content greater than 50 at.%; however, a series of extra peaks of mixing indices appears, with intensities gradually enhanced with the increase of La content. For the complete substitution of Pb by La, a splitting of some reflections can be observed in the diffraction pattern. The results indicate that the crystal structure evolves continuously with the La content, from disordered cubic perovskite of space group Pm 3 m for X = 0, to ordered cubic perovskite of space group Fm 3 m for X = 0.5, distorted cubic perovskite of space group Pa 3 for 0.5 < X < 0.9, and finally to a rhombohedral perovskite, possibly belonging to the space group R 3 , for X ≥ 0.9. In the evolution of structure, a linear reduction of the lattice constant of the perovskite cell from 4.048 to 3.964 Å was observed.  相似文献   

14.
Extensive solid solution was observed in the system Pb(Sc1/2/,Nb1/2,)1-x,Tix,O3. In the range 0 ≤ x ≤ 0.425 a rhombohedral ferroelectric phase was stable at 25° C. In the range 0.45 ≤ x ≤ 1.00 a tetragonal ferroelectric phase was stable at this temperature. The phase diagram of the system below 500° C strongly resembles that of PbZrO3−PbTiO3. The compound Pb(Sc1/2Nb1/2)O3 exhibited rhombohedral perovskite cell symmetry below the ferroelectric ↔ paraelectric transition temperature, and the angle a was acute. The radial coupling coefficient was 0.46 for the composition Sc1/2Nb1/2)0.575Ti0.4250O3. At 25°C this composition consisted primarily of the rhombohedral phase with a small amount of the tetragonal phase present. The ferroelectric ↔ paraelectric transition occurred over a temperature range in the rhombohedral phase field. The spontaneous polarization was finite at temperatures considerably above the temperature of the permittivity maximum for a given rhombohedral solid solution.  相似文献   

15.
The microwave dielectric properties and crystal structure of Ba(Zn1/3Ta2/3)O3– (Sr,Ba)(Ga1/2Ta1/2)O3 ceramics were investigated in the present study. The Q value of Ba(Zn1/3Ta2/3)O3 was improved by adding 5 mol% Sr(Ga1/2Ta1/2)O3. The maximum Q value of Q × f = 162000 GHz was obtained at 0.95Ba(Zn1/3Ta2/3)O3. 0.05Sr(Ga1/2Ta1/2)O3. For this composition, a lattice super structure caused by hexagonal ordering was observed. A further improvement in the Q value was attained when some Sr was replaced with Ba, and 0.95Ba(Zn1/3Ta2/3)O3· 0.05(Sr0.25Ba0.75)(Ga1/2Ta1/2)O3 exhibited a maximum Q value such that Q × f = 210000 GHz. Despite the increased Q value with the replacement of Sr by Ba, the c/a value, which indicates the degree of lattice distortion, remained constant near 3/2. The Q value thus improved without lattice distortion in the system Ba(Zn1/3Ta2/3)O3-(Sr,Ba)(Ga1/2Ta1/2)O3, whereas the improvement of Q value increased with lattice distortion in the solid solution system with Ba(Zn1/3Ta2/3)O3 as an end member.  相似文献   

16.
The ordered structures of the (Pb1- x Ba x )(Mg1/3Nb2/3)O3crystalline solution series were investigated by selected area electron diffraction (SAED) and high-resolution electron microscopy (HREM). At low Ba contents (e.g., x < 0.40), the ordered structure was found to be isostructural with Pb(Mg1/3Nb2/3)O3, with a doubled unit cell characterized by 1/3{111} superlattice reflections. At higher Ba contents (e.g., x > 0.60), the ordered structure was characterized by 1/3{111} superlattice reflections. For intermediate Ba contents (e.g., x - 0.60), diffuse scattering along the {111} between diffuse 1/2{111} and 1/3{111} reflections was observed. The ordering is attributed to the distribution of the B-site cations between multiple sublattices. Strong fluctuations in the B-site cation ratio between ordered and disordered regions are believed not to exist; however, the possibility of weak fluctuations is consistent with the observed lattice images.  相似文献   

17.
The structure stability of perovskite-type compounds has been quantitatively estimated by applying bond valence calculations to Pb(Mg1/3Nb2/3)O3 (PMN) and Pb(Zn1/3Nb2/3)O3 (PZN). The bond valence calculations revealed that the bond strength between oxygen and cations in the pyrochlore-type compounds is greater than that in the perovskite PMN. It is found that the absolute value of the bond valence sum of oxygen, | V O|, for a PZN single crystal is smallest in reported Pb-containing perovskite-type compounds, corresponding to the fact that it is impossible to synthesize PZN by solid-state reaction under atmospheric pressure. The calculated amount of additives required for stabilizing PZN under atmospheric pressure agreed well with the experimental values.  相似文献   

18.
19.
Ca(Mg1/3Nb2/3)O3 (CMN) and Ba(Zn1/3Nb2/3)O3 (BZN) ceramic disks were stacked with three stacking schemes, designated as CMN/BZN, CMN/BZN/CMN, and BZN/CMN/BZN, to yield layered dielectric resonators, and the microwave dielectric characteristics were evaluated with the TE01δ mode. Both experiments and finite element analysis showed that the microwave dielectric characteristics of the layered resonator were determined not only by the volume fraction of BZN but also by the stacking scheme. For each stacking scheme, a good combination of microwave dielectric characteristics with an effective dielectric constant of 34.33–34.52, a Q × f value of 58 800–62 080 GHz, and a near-zero temperature coefficient of resonant frequency could be achieved by adjusting the volume fraction of BZN. The effects of the stacking scheme on the microwave dielectric characteristics of the temperature-stable layered resonator were discussed by combining finite element analysis and dielectric composite models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号