首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
二维光子晶体带隙结构的研究   总被引:3,自引:0,他引:3  
刘青  李承芳  张翔 《激光杂志》2002,23(2):33-34,37
利用时域有限差分法模拟了二维光子晶体的带隙结构。通过改变二维光子晶体的结构、介电常数配比及存在缺陷时,在光频范围内模拟了二维光子晶体带隙结构的变化。  相似文献   

2.
利用时域有限差分法(FDTD)对光子晶体的传输特性进行了研究.计算了不同条件下完整结构阶跃型光子晶体的透过率谱.通过透过率谱的变化,分析了介质层数、介质所占空间配比、介质介电常数比对光子带隙的影响.发现介质层数的增加会使光子带隙拓宽并加深,但是带隙的位置不会移动;介质介电常数比越大,带隙越宽越深,也越容易出现带隙.  相似文献   

3.
相晓昕 《激光杂志》2014,(10):22-24
为了得到蜂巢晶格光子晶体带隙特性,本文基于电磁传播规律的时域有限差分法,数值模拟得到不同半导体材料构成蜂巢晶格二维光子晶体对应的第一带隙宽度,结果显示随着介电常数的增加,模拟得到第一带隙上下边界频率向低频方向移动,带隙宽度逐渐增加,对于高介电常数的PbS、PbSe和PbTe构成蜂巢晶格二维光子晶体情况反之。研究结论为不同材料构成光子晶体材料的特性提供依据。  相似文献   

4.
选用时域有限分方法(FDTD)分析光子晶体带隙结构.选择两种不同晶格常数的二维光子晶体构成复合型二维光子晶体,计算了复合型光子晶体和组合光子晶体在近红外频段的带隙结构,结果表明,复合型二维光子晶体在近红外波频段的禁带宽度明显大于组合光子晶体禁带宽度.通过改变复合光子晶体的介电常数,实现其禁带向高频区或低频区移动.  相似文献   

5.
一种新型的光子带隙结构单元   总被引:9,自引:1,他引:8       下载免费PDF全文
本文提出了一种新型的光子带隙结构单元,利用其作为微带线的基板,可以在中心频率8.6GHz处观察到一个宽于200MHz的禁带。实验测试结果与FDTD的仿真结果相吻合。  相似文献   

6.
FDTD方法分析光子带隙微带结构   总被引:13,自引:1,他引:12       下载免费PDF全文
本文采用时域有限差分法分析计算了一维光子带隙微带结构的S参数,并设计制作了光子带隙(PBG)微带线,进行了测量。将计算结果与测量结果对比可以看出两者吻合得比较好,说明采用的分析方法是有效的。  相似文献   

7.
二维复周期光子晶体的带隙结构   总被引:1,自引:0,他引:1  
黄晓琴 《激光杂志》2004,25(4):37-38
提出了由二维六边形结构和三角结构叠合构成的复周期光子晶体 ,利用平面波展开法计算了由空气中的介质圆柱棒组成的该复周期光子晶体的带结构。结果表明二维六边形结构和三角结构叠合构成的复周期结构的光子晶体可以形成很宽的TE波光子带隙 ,并且具有较宽的TE波和TM波带隙重叠的绝对光子带隙  相似文献   

8.
本文基于时域有限差分法数值模拟了二维固-气正方声子晶体结构带隙特性,计算了填充率和晶格常数对带隙特性的影响,研究得到填充率在f=0.8时形成最宽带隙,这对声子晶体结构的设计提供了理论基础。  相似文献   

9.
应用平面波展开法数值模拟了不同结构二维光子晶体TE模带隙特性,数值模拟得到正方形、正三边形和正六边形圆柱光子晶体结构的TE模带隙特性,比较得到正三边形圆柱结构光子晶体能够形成较宽TE模带隙结构.改变正方形圆柱光子晶体结构形成正方形椭圆柱结构和长方形圆柱结构光子晶体,比较得到长方形圆柱结构光子晶体形成带隙宽度较宽.研究就论为制作TE模滤波器件提供理论参考.  相似文献   

10.
用时域有限差分法研究了光在部分无序二维光子晶体中的透射特性。结果表明:介质柱的位置和大小无序都对光子晶体的高频透射特性都有影响而对低频几乎无影响,随着无序度增大,禁带呈现拓宽的趋势。仅介质柱的位置无序变化时,每个带隙低频端边缘比高频端边缘对无序度变化更敏感。仅介质柱的大小无序变化时,每个带隙间的通带频率越高对无序度变化越敏感。介质柱的大小无序和位置无序度相同时,在高频段后者比前者作用更显著。  相似文献   

11.
导出了二维三角晶格光子晶体的填充系数与正多边形散射子外接圆半径的普适关系,并利用平面波展开法计算了Ge基二维三角晶格光子晶体的光子带隙.计算表明:Ge圆柱置于空气背景中时,可产生TM、TE带隙,TM带隙占优势;随着Ge填充系数的增大,光子带隙的宽度先增大后减小,其中心频率由高频向低频移动;TM模第一带隙宽度在半径为0.14a处达峰值.空气圆柱置于Ge背景中时,可产生TM、TE及完全带隙,TE带隙占优势;随着空气填充系数的增大,光子带隙的宽度先增大后减小,其中心频率由低频向高频移动;TE模第一带隙宽度和最大完全带隙宽度分别在半径为0.46a和0.49a处达峰值.  相似文献   

12.
一种介质柱在空气中复合周期排列的二维光子晶体新结构被提出和研究,该结构是二套不同尺寸的介质柱的正方周期排列的叠加所构成。针对这种光子晶体,我们对Maxwell方程做出了严格的Fourier变换,从而建立了快速的平面波展开算法。应用所建立的快速理论算法,我们详细地数值分析了这种光子晶体的能带结构及相关禁带,结果表明,与介质柱的简单正方周期结构相比,复合周期结构由于降低了结构的对称性,它的绝对禁带得到了显著的增大。  相似文献   

13.
温度、密度对磁化等离子体光子晶体的影响   总被引:1,自引:3,他引:1  
为了研究温度、密度对磁化等离子体光子晶体禁带特性的影响,采用在等温近似的条件下,磁化等离子体的分段线形电流密度卷积时域有限差分算法研究了1维磁化等离子体光子晶体的禁带特性.以高斯脉冲为激励源,用算法公式得到的电磁波透射系数来讨论了温度、等离子体层密度对其禁带特性的影响.结果表明,改变温度和等离子体层密度分布可以实现对禁带的控制.  相似文献   

14.
给出了一种判断一维光子晶体禁带位置的相位图,利用扩展相位图可方便地描述光子晶体的禁带位置和禁带特征.研究发现,当光子晶体为1/4波片层堆时,光子晶体的禁带最宽;若要进一步展宽禁带,需提高构成周期单元的两种介质的折射率比.对于一般的光子晶体,若周期单元中两种介质的光学厚度不等,则其禁带中心将偏离中心频率的整数倍.此外还研究了禁带中心区的透射率,给出了中心频率附近透射率的一级近似解析解,并由此定性讨论了Fabry-Perot腔的谱线宽度和品质因子.  相似文献   

15.
为了研究多光子非线性Compton散射对横向磁光效应磁化等离子体光子晶体光子带隙特性的影响,采用多光子非线性Compton散射模型和时域有限差分法进行了理论分析和实验验证,取得了关于晶体色散和调制不稳定性、光子带宽变化的重要数据,并提出了将入射光和Compton散射光作为磁化等离子体光子晶体色散的新机制.结果表明,Compton散射使等离子体色散增强,耦合电磁波通带变窄、阻带变宽,有效地降低了电磁波传输中的交叉相位调制的不稳定性,频率低于等离子体频率的电磁波在等离子体中的传播几率减小.  相似文献   

16.
二维正方柱结构光子晶体禁带的研究   总被引:2,自引:1,他引:2  
利用平面波展开法通过计算机模拟仿真对二维正方排列介质方柱和空气方柱结构以及三角排列介质方柱和空气方柱结构进行了禁带研究。研究发现:这四种二维光子晶体结构都存在完全禁带。介质方柱结构具有较大的TM禁带,而空气方柱结构具有较大的TE禁带。当介质方柱宽度增大时,禁带中心频率均向低频移动,而当空气方柱宽度增加时,禁带中心频率均向高频移动。当增大材料折射率时,禁带中心频率均向低频移动。对于空气方柱结构,应该选取高折射率材料,以提高完全禁带的带隙率。  相似文献   

17.
可调谐光子带隙晶体的研究进展   总被引:2,自引:2,他引:0  
近几年来,人们对可调谐光子晶体的兴趣日益增长,并且实际光子器件的应用推动着动态调谐方法的进一步发展。本文主要从光子带隙晶体的调谐机制、调谐途径、所用材料等方面,综述了可调谐光子晶体的研究进展。系统介绍了利用外部应力、电场、磁场、温度等激励,控制晶体结构参数的变化,实现光子带隙的改变;还介绍了通过控制介电材料来改变光子带隙,主要介绍了液晶材料、电光材料等几种常用的材料。比较了不同调谐方法的特点。最后分析了光子晶体带隙调谐的进一步研究方向。  相似文献   

18.
1维3元磁化等离子体光子晶体传输特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究1维3元磁化等离子体光子晶体的传输特性,采用传输矩阵法得到了TE波通过1维3元磁化等离子体光子晶体后的左旋和右旋极化波的传输特性,用计算得到的透射系数来讨论了周期常数、介电常数、介质层厚度和等离子体参量对其传输特性的影响。结果表明,改变介电常数、介质层厚度和等离子体频率可以实现对禁带数目和宽度的调谐,改变周期数和等离子体碰撞频率不能影响禁带带宽;等离子体回旋频率仅仅能影响右旋极化波的禁带带宽,对左旋极化波的禁带带宽无影响。这为设计1维3元磁化等离子体光子晶体器件提供了理论参考。  相似文献   

19.
二维金属型光子晶体带隙研究   总被引:1,自引:0,他引:1  
考虑金属的色散特性,运用时域有限差分方法计算了分别由Ag、Al两种金属构成的三角晶格二维金属型光子晶体的带隙结构,得出了带隙结构与填充率的关系曲线.以Ag填充率为0.6为例,三角晶格的第一带隙归一化频率的上限为0.90,第二带隙的范围为1.24~1.41;正方晶格第一带隙归一化频率的上限为0.70,第二带隙的范围为0....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号