首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
以尿素为沉淀剂,柠檬酸钠为络合剂,采用均相沉淀法制备Ni~(2+)-Fe~(3+)-CO_3~(2-)-LDHs。以制备的Ni~(2+)-Fe~(3+)-CO_3~(2-)-LDHs为前驱体,分别与Na Cl和对甲苯磺酸钠进行离子交换反应得到Ni~(2+)-Fe~(3+)-C_7H_7SO_3~--LDHs新型催化剂,成功实现对甲苯磺酸根负载Ni~(2+)-Fe~(3+)-LDHs。研究表明,Ni~(2+)-Fe~(3+)-C_7H_7SO_3~--LDHs为介孔材料,比表面积为165.6 m~2·g~(-1),平均孔径为14.7 nm,较大比表面积和空隙结构增强了其吸附性能和催化活性。  相似文献   

2.
Bi0.96Sr0.04Fe0.98Co0.02O3/CoFe2O4(BSFCO/CFO) bilayered thin films with different thicknesses of the BSFCO layer are synthesized on FTO/glass substrates by chemical solution deposition method (CSD). The influence of BSFCO thickness on the microstructure, dielectric relaxation, ferroelectric properties and resistive switching (RS) of the thin films are researched. Strain exists in the prepared thin films and gives rise to structural distortion, which has an effect on charged defects and ferroelectric polarization. Dielectric relaxation that is closely related to the interfacial polarization at the BSFCO/CFO interface is observed, and the dielectric loss peaks along with decreasing intensity shift to high frequency with decreasing strain. The Maxwell-Wagner two-layer model is adopted to investigate the mechanism of dielectric relaxation, and the relaxation time τ is calculated and it shown to be directly proportional to the strain. It is found that the dielectric properties, including low dielectric loss, can be improved by controlling the BSFCO layer thickness. The ferroelectric properties improve with the decreasing strain, the 12-BSFCO/CFO thin film possesses a large Pr ~ 102.9?μC/cm2 at 660?kV/cm. The observed resistive switching (RS) behavior is attributed to the interfacial conduction mechanism, it is found that strain-dependent the ferroelectric polarization switching modulates the width of depletion layer and the height of potential barrier at the interface, resulting in the different resistance states.  相似文献   

3.
The mixed ionic and electronic conductors of La0.9Ca0.1Ni0.5Co0.5O3-Ce0.8Sm0.2O1.9 (LCNC-SDC) are investigated systematically for potential application as a cathode for solid oxide fuel cells based on a Ce0.8Sm0.2O1.9 (SDC) electrolyte. The electrochemical impedance spectroscopy (EIS) measurements are performed in air over the temperature range of 600-850 °C to determine the cathode polarization resistance. The exchange current densities for oxygen reduction reaction (ORR), determined from the low-field cyclic voltammetry, high-field cyclic voltammetry, and EIS data are systematically investigated. The activation energies (Ea) for ORR determined from the slope of Arrhenius plots are in the range of 102.33-150.73 kJ mol−1 for LCNC-SDC composite cathodes. The experimental results found that LCNC-SDC (70:30) composite cathode has a maximum exchange current density and a minimum polarization resistance of 0.30 Ω cm2 for 850 °C among LCNC-SDC composite cathodes.  相似文献   

4.
Green pigments with high near infrared reflectance based on a Cr2O3-TiO2-Al2O3-V2O5 composition have been synthesized. Cr2O3 was used as the host component and mixtures of TiO2, Al2O3 and V2O5 were used as the guest components. TiO2, Al2O3, and V2O5 were mixed into 39 different compositions. The spectral reflectance and the distribution of pigment powder were determined using a spectrophotometer and a scanning electron microscope, respectively. It was found that a pigment powder sample S9 with a Cr2O3-TiO2-Al2O3-V2O5 composition of 80, 4, 14 and 2 wt%, respectively, gives a maximum near infrared solar reflectance of 82.8% compared with 49.0% for pure Cr2O3. The dispersion of pigment powders in a ceramic glaze was also studied. The results show that the pigment powder sample S9 is suitable for use as a coating material for ceramic-based roofs.  相似文献   

5.
The influences of Li2O-B2O3-SiO2 glass (LBS) on the activation energy, phase composition, the stability of the structure and microwave dielectric properties of Zn0.15Nb0.3Ti0.55O2 ceramics have been systematically investigated. LBS glass acted as flux former and contributed to the reactive liquid-phase sintering mechanism, which remarkably lowed the sintering temperature from 1150?°C to 900?°C and enhanced the shrinkage and densification of ceramic at the low sintering temperatures. The ceramics with 1.5?wt% LBS glass sintered at 900?°C for 3?h show great properties: εr = 73.59, Q × f = 8024?GHz, τf = 270.54?ppm/°C.  相似文献   

6.
采用固相法制备了 Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3–SrTiO3(NBT–KBT–BT–ST)陶瓷,该体系是按(1–2x)(0.8NBT–0.2KBT)–x(0.94NBT–0.06BT)–x(0.74NBT–0.26ST) (x = 0.10、0.20、0.25、0.30、0.35、0.40、0.45)组合而成的,研究了该系陶瓷的结构与电性能。结果表明:所有样品都处于三方–四方准同型相界区域。该系陶瓷在准同型相界附近表现出了优异的压电性能,压电常数 d33、机电耦合系数 kp和剩余极化强度 Pr随 x 的增加先升高后降低,其中 x=0.35 陶瓷的电性能最佳:d33= 210 pC/N,kp= 0.319,Pr= 39.3 μC/cm2,Ec= 20.2 kV/cm,是一种良好的无铅压电陶瓷候选材料。依据准同型相界组成的线性组合规律来寻找具有优异压电性能的 NBT–KBT–BT–ST 陶瓷准同型相界组成是可行的。  相似文献   

7.
Pr2O3-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCTZ-xPr) ceramics were prepared by the conventional solid-state method. A tetragonal phase is only observed in these ceramics, and the introduction of Pr2O3 decreases their sintering temperature without affecting negatively the piezoelectric constant. Enhanced ferroelectric properties were obtained in these BCTZ-xPr ceramics. The ceramic with x=0.06 wt% exhibits a good electrical behavior of d33∼460 pC/N, kp∼47.6%, εr∼4638, and tan δ∼0.015 when sintered at a low temperature of ∼1400 °C. As a result, the BCTZ-xPr ceramic is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

8.
A bi-layered composite cathode of La0.8Sr0.2MnO3 (LSM)-YSZ and LSM-La0.4Ce0.6O1.8 (LDC) was fabricated for anode-supported solid oxide fuel cells with a thin YSZ electrolyte film. The cell with the bi-layered composite cathode displayed better performance than the cell with the corresponding single-layered composite cathode of LSM-LDC or LSM-YSZ. At 650 °C, the cell with the bi-layered composite cathode gave a higher maximum power density than the cells with the single-layered LSM-LDC and LSM-YSZ composite cathodes, by 52% and 175%, respectively. The impedance spectra results show that the thin LSM-YSZ interlayer not only improves the cathode/electrolyte interface but also reduces the polarization resistance of the cathode. The activation energy for oxygen reduction on the bi-layered composite cathode is much smaller than that on LSM-YSZ composite cathode, and it is suggested that the special redox property of Ce4+/Ce3+ in LDC facilitates the oxygen reduction process on the bi-layered composite cathode. The cell with the bi-layered composite cathode operated quite stably during a 100 h run.  相似文献   

9.
Sintering kinetics of the system Si3N4-Y2O3-Al2O3 were determined from measurements of the linear shrinkage of pressed disks sintered isothermally at 1500° to 1700°C. Amorphous and crystalline Si3N4 were studied with additions of 4 to 17 wt% Y2O3 and 4 wt% A12O3. Sintering occurs by a liquid-phase mechanism in which the kinetics exhibit the three stages predicted by Kingery's model. However, the rates during the second stage of the process are higher for all compositions than predicted by the model. X-ray data show the presence of several transient phases which, with sufficient heating, disappear leaving mixtures of β ' -Si3N4 and glass or β '-Si3N4, α '-Si3N4, and glass. The compositions and amounts of the residual glassy phases are estimated.  相似文献   

10.
Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions were studied for potential applications in water decontamination technology and their capacity to induce an oxidation process under VIS light. UV–vis spectroscopy analysis showed that the junctions-based Cu2O, Bi2O3 and ZnMn2O4 are able to absorb a large part of visible light (respectively, up to 650, 460 and 1000 nm). This fact was confirmed in the case of Cu2O/TiO2 and Bi2O3/TiO2 by photocatalytic experiments performed under visible light. A part of the charge recombination that can take place when both semiconductors are excited was observed when a photocatalytic experiment was performed under UV–vis illumination. Orange II, 4-hydroxybenzoic and benzamide were used as pollutants in the experiment. Photoactivity of the junctions was found to be strongly dependent on the substrate. The different phenomena that were observed in each case are discussed.  相似文献   

11.
In this paper, Al2O3-Si3N4/ZrO2-Al2O3 laminated composites were fabricated by tape casting and hot press sintering, and the relationships between the process, microstructure, and mechanical properties of Al2O3-Si3N4/ZrO2-Al2O3 laminated composites were determined. The SiAlON phase was found in the Al2O3-Si3N4 layer, and liquid-phase sintering was proposed. Nano-scratch tests were carried out to investigate the interface bonding strength of the laminates. The distribution of residual stresses, generated due to the different coefficients of thermal expansion between the different layers, was estimated according to lamination theory and confirmed using Vickers indentation. When the sintering temperature was 1550 °C, the sintered laminated ceramics had good mechanical properties, with a maximum strength and toughness of 413 MPa and 6.2 MPa m1/2, respectively. The main toughness mechanics of laminated composites was residual stress.  相似文献   

12.
This paper examines the important mechanical properties of commercially purchased La0.8Sr0.2Ga0.8Mg0.2O3 at room temperature and 800 °C. Sr and Mg-doped lanthanum gallates (LSGM) are strong candidates for use as solid electrolytes in lower temperature solid oxide fuel cells operating at or below 800 °C. The material was found to be phase pure with a Young's modulus value of ∼175 GPa. The four point bending strength of the LSGM samples remained almost constant from 121 ± 35 MPa at room temperature to 126 ± 20 MPa at 800 °C. The fracture toughness, as measured by the single edge V notch beam (SEVNB) method, was 1.22 ± 0.06 MPa√m at room temperature, 1.04 ± 0.09 MPa√m at 700 °C followed by a small increase 1.31 ± 0.16 MPa√m at 800 °C. We also report, for the first time, the static subcritical (or slow) crack-growth (SCG) behavior of natural cracks in LSGM performed in four point bending tests at room temperature. The exponent of a power-law representation in the SCG tests was found to be n = 15, a rather low value showing LSGM to be highly susceptible to room temperature SCG.  相似文献   

13.
A fast sodium ion conductor, NASICON (Na3Zr2Si2PO12), has been widely used for gas sensor applications. In this study, we demonstrate that a device combining NASICON with an oxygen-ion conductor of BiCuVOx (Bi2Cu0.1V0.9O5.35) can electrochemically detect volatile organic compounds (VOCs), such as ethanol, formaldehyde, and toluene. The sensing electrode made of BiCuVOx was attached onto a sintered NASICON disk at high temperature to produce an interfacial layer that had a different morphology and composition from those of NASICON and BiCuVOx, as observed by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. The device in which NASICON was fitted with the BiCuVOx-based electrode was found to efficiently detect VOCs in ppm concentrations. The sensor signal (electromotive force) exceeded 100 mV in response to 10 ppm HCOH at 400 °C, demonstrating the high sensitivity of the device. It also exhibited a relatively quick response, reproducible and stable sensor signals, and high selectivity to VOCs. The sensor responses followed behavior typical for mixed-potential-type gas sensors based on oxygen-ion conductors. It was thus suggested that the electrochemical oxidation of VOCs with oxide ions took place at the interfacial oxygen ion-conductive layer that was formed by the reaction of NASICON with BiCuVOx.  相似文献   

14.
The crystal structure of the LiNaZnP2O7 compound is determined using X-ray powder diffraction (space group Cmcm, a = 12.431 Å, b = 7.589 Å, c = 6.283 Å). The structure has a mixed tetrahedral framework consisting of the diortho groups [P2O7] and the tetrahedra [ZnO4] and [LiO4], which are joined into chains. The [ZnO4] and [LiO4] tetrahedra are distributed in the chains in a random manner, because the zinc and lithium atoms statistically occupy one crystallographic position. The sodium cations are arranged in channels of the tetrahedral framework. The atomic coordinates and interatomic distances in the structure are reported. Original Russian Text Copyright ? 2005 by Fizika i Khimiya Stekla, Shepelev, Lapshin, Petrova, Novikova.  相似文献   

15.
Zeolite L powder was prepared from the substrate mixture of Na2O-K2O-Al2O3-SiO2-H2O system at temperatures of 373-443 K. In order to investigate the factors which influence the synthesis outcome, a reference system which yields zeolite L in a reproducible manner was chosen and subjected to controlled changes in synthesis parameters. The crystalline zeolite L samples obtained were characterized by elemental chemical analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). It was established that phase purity, morphology, and the size of crystals of crystalline product were affected by molar ratios of the substrate, such as SiO2/Al2O3, (K2O+Na2O)/SiO2, Na2O/(K2O+Na2O), and H2O/(K2O+Na2O). Amorphous silica powder (Zeosil) was the preferred silica source, and the crystallization rate was promoted by introducing gel aging, seeding, and rapid heating rate.  相似文献   

16.
High-temperature X-ray diffraction and differential thermal analyses showed that LiGa5O8 exists in two polymorphs related by the first-order transition at 1138°±3°C of the low-temperature simple-cubic form, space group (probably) O7, to the high-temperature spinel (fcc) form, space group O h 7. The transition is rapid, and the high-temperature form in pure LiGa5O8 could not be quenched to room temperature under the conditions used. However, the high-temperature polymorph can be quenched under equilibrium conditions when 40 mol% or more MgGa2O4 is present. The subsolidus equilibrium relations in the system MgGa2O4-LiGa5O8 are discussed.  相似文献   

17.
Vanadium phosphate and cadmium sulfide-doped vanadium phosphate glasses containing up to 50–80 mol % V2O5 are prepared. The thermopower of these glasses is measured in the temperature range 303–473 K. The activation energies are determined from the linear dependences of the thermopower S and the logarithm of the conductivity logσ on the reciprocal of the temperature 1/T. It is demonstrated that the activation energies obtained by two methods differ from each other. The difference between the activation energies is referred to as the hopping energy Δ. The possibility of an Anderson metal-insulator transition occurring is examined. It is revealed that similar transitions are not observed in the glasses under investigation. The data obtained are analyzed within the small-polaron hopping model describing the electron conduction. It is established that hopping conduction proceeds over localized states in the tail of the density of states. All the glasses are characterized by electron conduction. Original Russian Text Copyright ? 2005 by Fizika i Khimiya Stekla, Khairnar, Yawale, Pakade.  相似文献   

18.
S. Karunanithy  F. Aubke 《Carbon》1982,20(3):237-241
Graphite trifluoromethylsulfate C12SO3CF3, a new binary graphite salt is formed by the irreversible solvolysis of C8SO3F in a large excess of trifluoromethylsulfuric acid. The salt is identified as a stage one intercalation compound with a C0 value of 8.12 Å and characterised by microanalysis, epr and 19F NMR spectroscopy. Both Raman spectra, in the back scattering configuration, and IR spectra, in transmission as well as reflection geometries, are used to support an ionic formulation as C12+SO3CF3?.  相似文献   

19.
20.
Hao Jin  Xiaodan Sun  Weizheng Weng  Huilin Wan 《Fuel》2010,89(8):1953-1960
The effect of H4SiW12O40 loading on the catalytic performance of the reduced Ni-H4SiW12O40/SiO2 catalysts for hydrocracking of n-decane with or without the presence of thiophene and pyridine is studied. The catalysts were characterized by BET, XRD, Raman, XPS, H2-TPR, H2-TPD, NH3-TPD and FT-IR of pyridine adsorption. It was found that addition of H4SiW12O40 to the system increases the catalytic activity and the promoting effect is a function of the H4SiW12O40 loading. The best result was obtained on 5%Ni-50%H4SiW12O40/SiO2 catalyst which shows the highest activity for hydrocracking of n-decane and excellent tolerance to the sulfur and nitrogen compounds in the feedstock. The results showed that a suitable amount of H4SiW12O40 loading on the 5%Ni/SiO2 catalyst increases the amount of both hydrogen adsorbed and Brønsted acid and Lewis acid sites on the catalyst. The high catalytic performance of the catalyst can be related to the nature of H4SiW12O40 and the proper balance between metal and acid functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号