首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
目的 探究硅烷偶联剂对铝合金超疏水表面性能的影响。方法 通过化学刻蚀并结合硅烷偶联剂修饰,在AMS 4037铝合金上制备超疏水表面。首先,通过HCl/H2O2混合液对铝合金进行刻蚀,在其表面构造具有多级蜂巢状的微/纳复合结构,再分别采用硅烷偶联剂和含氟硅烷进行疏水改性。详细研究2种改性剂的浓度对刻蚀铝合金表面润湿性的影响。采用接触角测量仪对材料表面润湿性和表面自由能进行测试,通过扫描电镜、能谱仪、激光共聚焦显微镜对表面微观结构和化学成分进行表征。同时,对2种硅烷偶联剂修饰的铝合金超疏水表面进行液滴冻结时间、防覆冰及自清洁行为测试。结果 铝合金表面的疏水性并不总是与改性剂的浓度呈正相关。当改性剂的质量分数为0.5%时,经硅烷偶联剂修饰后其刻蚀表面的接触角为156.3°,但滚动角大于30°,而经含氟硅烷修饰后其表面的接触角可达164.4°,滚动角为6°。液滴在硅烷偶联剂和含氟硅烷修饰后的超疏水表面的冻结时间分别为37、45 s。结论 相较于硅烷偶联剂修饰的刻蚀表面,含氟硅烷改性后其表面能更低,疏水效果更好。相较于未处理的铝合金表面,经硅烷偶联剂修饰后铝合金超疏水表面可显著抑制液滴的冻结过程,具有更长的冻结时间和延迟覆冰的能力,并且含氟硅烷修饰后表面的防冰性能更佳。自清洁实验也证明经含氟硅烷修饰后的表面具有更好的自清洁性能,其表面的微小灰尘颗粒更易被带走。  相似文献   

2.
采用光纤激光打标机在GH4169基底上刻蚀出微观结构,并通过在1.0%氟硅烷(FAS)乙醇溶液中改性降低表面能制备GH4169超疏水表面。该超疏水表面能达到接触角大于160°且滚动角小于10°。通过扫描电子显微镜(SEM)、能谱仪(EDS)、接触角测量仪对样品的微观结构、元素组成及润湿性进行表征和分析。采用单因素实验探究光纤激光打标机的扫描频率、功率以及速度对GH4169表面润湿性的影响规律,并对制备出的超疏水表面的粘附性和自清洁性进行了测试。  相似文献   

3.
利用激光辐射效应在铝合金表面构建仿生微织构,通过自组装工艺在微织构表面实现氟硅烷改性处理,制备得到特殊浸润性表面。 利用扫描电镜、三维形貌仪、接触角测量仪对试样微观形貌和浸润性进行表征。 测试与分析结果表明,仿生微织构和氟硅烷修饰对构建特殊浸润性表面起到重要作用;微织构的形貌差异、加工矩阵间距的变化均会影响试样表面对水接触角。 通过数学模型的计算进一步证实,仿生微织构表面具有的超疏水浸润状态符合 Cassie 模型预测。  相似文献   

4.
先在铝基体上制备了镁铝水滑石膜层和十钒酸根插层水滑石膜层两种类水滑石膜层,再采用全氟辛基三乙氧基硅烷通过气相沉积法对类水滑石膜层进行不同时间的表面改性,制备出超疏水类水滑石膜层。采用扫描电子显微镜、接触角测量仪对膜层的结构和润湿性进行分析,讨论了改性时间对膜层结构和超疏水性能的影响,并且通过电化学测试,短期浸泡试验及盐雾试验进一步研究了该超疏水膜层的耐蚀性。结果表明:改性1 h即可使类水滑石膜层获得超疏水性能,随着改性时间的延长,超疏水膜层的接触角基本不变,12 h为最佳改性时间;超疏水膜层可以极大提高基体的耐蚀性,其中装载钒酸盐缓蚀剂超疏水类水滑石膜层的耐蚀性远高于单纯超疏水类水滑石膜层的。  相似文献   

5.
针对目前油水分离方法分离效率低、重复利用率低、二次污染环境等问题,开展了疏水三维多孔油水分离材料的研究。 以泡沫镍为基底材料,通过水热法构造多级微纳复合结构表面和氟硅烷疏水化处理得到超疏水泡沫镍。 利用扫描电子显微镜、能谱仪、X-射线衍射仪和全反射傅里叶变换红外光谱仪、接触角测量仪表征其表面形貌、成分和疏水性能,测试改性泡沫镍的油水分离性能和重复利用率。 结果表明:在泡沫镍表面成功制备出“鸟巢状”垂直排列的 Ni(OH)2纳米片阵列,并形成局部“团簇状”凸起,协同泡沫镍本身微米级孔骨架构成多级微纳米粗糙结构,具有低表面能的氟硅烷成功组装在多级微纳结构表面,实现了优异的超疏水性能。 改性泡沫镍可实现对甲苯、氯仿、正己烷与水的混合物吸附分离,且具有良好的循环使用性。 制备的超疏水泡沫镍可在磁场控制下实现对油水混合物的分离,是一种高效、智能的油水分离三维多孔材料。  相似文献   

6.
提出了一种快速制备具有超疏水性、耐磨性和耐腐蚀性的Ti-10V-2Fe-3Al (TB6)钛合金表面的方法。通过纳秒激光器对抛光的钛合金进行精确烧蚀,构筑了具有平行微沟槽阵列特征的织构表面。随后,利用紫外线灯照射和十八烷基三氯硅烷溶液浸渍进行化学改性,进一步增强了表面的疏水性。从表面形态和化学组分的角度分析了微沟槽间隔对织构表面润湿性的影响。结果表明,在干滑动、水润滑和油润滑条件下,所制备的超疏水表面相较于原始亲水表面,平均摩擦系数分别降低了34%、56%和59%。此外,分析了相关摩擦系数变化的机理。通过动电位极化测试验证,所制备的超疏水表面展现出优异的耐腐蚀性,为钛合金基体提供了有效的长期保护。  相似文献   

7.
近年来,随着现代工业不断发展,金属材料的应用日趋广泛,同时金属材料的腐蚀问题也受到大家的广泛关注.超疏水化合物因其优良的化学特性而被应用于金属腐蚀防护领域.介绍了超疏水化合物在金属基底进行防护的原理,综述了近年来常用于制备超疏水表面的方法,如通过氟化物、硬脂酸类化合物、长链的烷基或者是硅烷基等疏水性物质对低表面能的化合物进行改性,构建出具有低表面能的超疏水表面.超疏水化合物与有机金属框架化合物(MOFs)、缓蚀剂以及微胶囊3种特殊的具有防腐特性的物质,可通过协同作用对金属基体进行防护:(1)利用一些疏水性化合物对具有特殊的表面特性的有机金属框架化合物(MOFs)纳米材料进行改性,制造出超疏水表面;(2)通过一些长链疏水性化合物对缓蚀剂进行改性,以提高其疏水性能,进而可获得更优异的防腐效果;(3)具有自修复功能的微胶囊与疏水性化合物,通过协同作用发挥其最佳防腐性能.最后对超疏水化合物在金属腐蚀与防护领域的应用前景进行了展望.  相似文献   

8.
硅烷偶联剂对β一偏磷酸钙晶须的表面改性研究   总被引:2,自引:0,他引:2  
陈琳 《表面技术》2008,37(6):21-23
为了改善β-偏磷酸钙晶须(β-CMPw)的疏水性能,采用八甲基环四硅氧烷(D4)和乙烯基三乙氧基硅烷(A-151),在超声分散条件下对β-CMPw进行了表面改性.采用润湿性试验测定晶须的硫水性能,通过扫描电镜(SEM)、热分析(TG-DSC)研究了超声时间和改性剂种类、含量对表面改性的影响.结果表明:晶须改性后的疏水性均优于未改性的晶须,获得了较佳的表面改性条件,即改性剂选用D4,超声时间20min,所加改性剂的质量分数为2%.  相似文献   

9.
以正辛基三乙氧基硅烷(TEOCS)和正硅酸乙酯(TEOS)作为前驱体,采用溶胶-凝胶法在铝合金表面制备一种硅烷改性膜层,并研究掺杂不同含量铈盐CeNO33·6H2O对膜层性能的影响.通过原子力显微镜、接触角测试、电化学阻抗谱和扫描电化学显微镜对掺杂前后膜层的表面形貌、润湿性、耐腐蚀性和自修复性能进行了表征.结果表明,当掺杂铈盐的含量为0.005 mol/L时,膜层具有较少的缺陷、较好的疏水性以及良好的耐蚀自修复性.  相似文献   

10.
目的将海胆状纳米二氧化硅(KCC-1)微球掺入聚偏氟乙烯(PVDF)中,制备出KCC-1/PVDF超疏水涂层,并在此基础上利用不同涂层修饰剂修饰,进一步制备出超滑涂层。方法以溴化十六烷基吡啶作为模板,结合煅烧法合成了海胆状KCC-1微球,分散到PVDF溶液中,在镁合金表面制备KCC-1/PVDF涂层,并进一步用不同修饰剂(全氟辛基三乙氧基硅烷(PFOTES)、十六烷基三甲氧基硅烷(HDTES)和二甲基硅油)对涂层表面进行改性。结果经过十六烷基三甲氧基硅烷改性,得到水接触角为155°的超疏水涂层,而灌注二甲基硅油后得到滑动角为4.5°的超滑表面。摩擦磨损实验中,超滑表面的耐磨性优于超疏水表面,优于空白镁合金;防覆冰实验结果表明超疏水和超滑表面能有效延缓液滴在表面结冰。结论KCC-1/PVDF超疏水与超滑涂层能有效地保护镁合金基底,且超滑涂层的防腐蚀性优于超疏水涂层,其腐蚀抑制效率IE分别为100%和98.28%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号