首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Embryonic rat hippocampal neurons were cultured on poly-D-lysine (PDL) or on cortical astrocytes, some of which had been pretreated for 24 h with amyloid beta-protein (beta-AP). Amino acid-induced currents were quantified. Membrane capacitance (Cm), as well as the amplitude and density of amino acid-evoked currents recorded in neurons cultured on untreated astrocytes were all statistically greater than those recorded in neurons grown on PDL. However, compared to untreated astrocytes, those treated with beta-AP led to significantly lower values in neurons for Cm and GABA, kainate- and NMDA-induced currents, while glycine-activated current values were not significantly different. Furthermore, beta-AP treatment abolished spontaneous Cac2+ fluctuations in astrocytes, which may account for their impaired ability to promote the expression of functional transmitter receptors in neurons.  相似文献   

2.
Strychnine-sensitive glycine-activated currents and gamma-aminobutyric acid (GABA)-activated currents were compared in two types of neurons acutely isolated from striatal slices by vibrodissociation: large cells, presumably cholinergic giant aspiny neurons (GAN) and medium sized cells, presumed medium spiny neurons (MSN). Whole cell voltage clamp and concentration jump techniques were used. All cells responded to glycine (10-1000 microM) and GABA (2-100 microM), in MSN and GAN the maximal responses to glycine were 50 and 120% of the GABA response, respectively. GABA- and glycine- responses were additive and blocked selectively by bicuculline (1 microM) and strychnine (50 nM), respectively. These results predict the presence of alpha- and beta-subunits of the glycine receptor in the striatum.  相似文献   

3.
By using the Ca(2+)-sensitive indictor Fura-2/AM, the cytosolic Ca2+ levels [Ca2+]i were measured in type 1 astrocytes in rat cortical astroglial primary cultures, after stimulation with GABA, muscimol (GABAA agonist), or baclofen (GABAB agonist). We report the first evidence that stimulation of both GABAA and GABAB receptors evokes Ca2+ transients in type I astrocytes. Two types of Ca2+ responses were seen: the single-phase curve, which was the most common, and the biphasic, which consisted of an initial rise that persisted at the maximal or submaximal level. Both types of Ca2+ responses appeared with some latency. The responses were obtained in astrocytes grown for 12-16 days in culture and the response frequencies for all three agonists were 18% of the total number of examined cells. However, when the astrocytes were grown in a mixed astroglial/neuronal culture the response frequencies for all three agonists increased to 35% of the total number of examined cells. In some cells, the responses after GABA stimulation were blocked to baseline levels after exposure to bicuculline (GABAA antagonist). In other cells, bicuculline only slightly reduced the GABA-evoked responses, and the addition of phaclofen (GABAB antagonist) did not potentiate this partial inhibition. However, the muscimol-evoked rises in [Ca2+]i were completely inhibited after exposure to bicuculline, while the responses after baclofen could only be partly blocked by phaclofen. GABA evoked rises in [Ca2+]i which alternatively were inhibited (mostly) or persisted in Ca(2+)-free buffer. The rises in [Ca2+]i persisted, but were reduced, in Ca(2+)-free buffer after stimulation with muscimol, but were inhibited after baclofen stimulation. The GABA uptake blockers guvacine, 4,5,6,7-tetrahydroisoxazolo(4,5-c)pyridin-3-ol and nipecotic acid were also able to reduce the GABA-evoked rises in [Ca2+]i. However, the L-type Ca2+ channel antagonist nifedipine failed to influence on the GABA-evoked Ca2+ transients. The results suggest that type 1 astrocytes in primary culture express GABA receptors which can elevate [Ca2+]i directly or indirectly via Ca2+ channels and/or via release from internal Ca2+ stores. The results also suggest that GABA can have intracellular Ca(2+)-mobilizing sites since the GABA-evoked responses were reduced after incubation with GABA uptake blockers.  相似文献   

4.
We studied spiking neurons isolated from turtle retina by the whole cell version of the patch clamp. The studied cells had perikaryal diameters > 15 microns and fired multiple spikes in response to depolarizing current steps, indicating they were ganglion cells. In symmetrical [Cl-], currents elicited by puffs of 100 microM gamma-aminobutyric acid (GABA) were inward at a holding potential of -80 mV. All of the GABA-evoked current was blocked by SR95331 (20 microM), indicating that it was mediated by a GABAA receptor. The GABA-evoked currents were unaltered by eliciting a transmembrane calcium current either just before or during the response to GABA. On the other hand caffeine (10 mM), which induces Ca2+ release from intracellular stores, inhibited the GABA-evoked current on average by 30%. The caffeine effect was blocked by introducing the calcium buffer bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) into the cell but was unaffected by replacing [Ca2+]o with equimolar cobalt. Thapsigargin (10 microM), an inhibitor of intracellular calcium pumps, and ryanodine (20 microM), which depletes intracellular calcium stores, both markedly reduced a caffeine-induced inhibition of the GABA-evoked current. Another activator of intracellular calcium release, inositol trisphosphate (IP3; 50 microM), also progressively reduced the GABA-induced current when introduced into the cell. Dibutyryl adenosine 3'5'-cyclic monophosphate (cAMP; 0.5 mM), a membrane-permeable analogue of cAMP, did not reduce GABA-evoked currents, suggesting that cAMP-dependent kinases are not involved in suppressing GABAA currents, whereas calmidazolium (30 microM) and cyclosporin A (20 microM), which inhibit Ca/calmodulin-dependent phosphatases, did reduce the caffeine-induced inhibition of the GABA-evoked current. Alkaline phosphatase (150 micrograms/ml) and calcineurin (300 micrograms/ml) had a similar action to caffeine or IP3. Antibodies directed against the ryanodine receptor or the IP3 receptor reacted with the great majority of neurons in the ganglion cell layer. We found that these two antibodies colocalized in large ganglion cells. In summary, intracellular calcium plays a role in reducing the currents elicited by GABA, acting through GABAA receptors. The modulatory action of calcium on GABA responses appears to work through one or more Ca-dependent phosphatases.  相似文献   

5.
The distribution of glycine- and gamma-aminobutyric acid (GABA)-like immunoreactivity (LI) in nerve terminals on the cell soma of motoneurons in the aldehyde-fixed cat L7 spinal cord was examined using postembedding immunogold histochemistry in serial ultrathin sections. Quantitative examination of 405 terminals on eight neurons of alpha-motoneuron size in the L7 motor nuclei from one animal was performed. A majority of the terminals (69%) were immunoreactive to glycine and/or GABA. These terminals contained flat or oval synaptic vesicles, thus classifying them as F type or as C type in one case. In no case was a type-F terminal unlabeled for both glycine and GABA. Most of the immunolabeled terminals were immunoreactive to glycine only (62.5%), whereas 35.4% contained both glycine- and GABA-LI. A very small number of immunolabeled terminals (2%) were immunoreactive to GABA only. In those terminals, where glycine- and GABA-LI coexisted, the gold particle density for each amino acid was only half of that seen in boutons containing only one of the two amino acids. The involvement of glycine and GABA in postsynaptic inhibition of spinal alpha-motoneurons is discussed, with particular reference to the possibility that these two inhibitory amino acids may be coreleased from a significant proportion of the nerve terminals impinging on the cell bodies.  相似文献   

6.
Cultured dorsal root ganglion neurons were voltage clamped at -90 mV to study the effects of intracellular application of nicotinamide adenine dinucleotide (betaNAD+), intracellular flash photolysis of caged 3',5'-cyclic guanosine monophosphate (cGMP), and metabotropic glutamate receptor activation. The activation of metabotropic glutamate receptors evoked inward Ca2+-dependent currents in most cells. This was mimicked both by intracellular flash photolysis of the caged axial isomer of cGMP [P-1-(2-nitrophenyl)ethyl cGMP] and intracellular application of betaNAD+. Whole cell Ca2+-activated inward currents were used as a physiological index of raised intracellular Ca2+ levels. Extracellular application of 10 microM glutamate evoked the activation of Ca2+-dependent inward currents, thus reflecting a rise in intracellular Ca2+ levels. Similar inward currents were also activated after isolation of metabotropic glutamate receptor activation by application of 10 microM glutamate in the presence of 20 microM 6-cyano-7-nitroquinoxaline-2,3-dione and 20 microM dizocilpine maleate (MK 801), or by extracellular application of 10 microM trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid. Intracellular photorelease of cGMP, from its caged axial isomer, in the presence of betaNAD+ was also able to evoke similar Ca2+-dependent inward currents. Intracellular application of betaNAD+ alone produced a concentration-dependent effect on inward current activity. Responses to both metabotropic glutamate receptor activation and cGMP were suppressed by intracellular ryanodine, chelation of intracellular Ca2+ by bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid, and depletion of intracellular Ca2+ stores, but were insensitive to the removal of extracellular Ca2+. Therefore both cGMP, possibly via a mechanism that involves betaNAD+ and/or cyclic ADP-ribose, and glutamate can mobilize intracellular Ca2+ from ryanodine-sensitive stores in sensory neurons.  相似文献   

7.
Astrocytes exhibit a form of excitability and communication on the basis of intracellular Ca2+ variations (Cornell-Bell et al., 1990; Charles et al., 1991) that can be initiated by neuronal activity (Dani et al., 1992; Porter and McCarthy, 1996). A Ca2+ elevation in astrocytes induces the release of glutamate (Parpura et al., 1994; Pasti et al., 1997; Araque et al., 1998;Bezzi et al., 1998), which evokes a slow inward current in neurons and modulates action potential-evoked synaptic transmission between cultured hippocampal cells (Araque et al., 1998), suggesting that astrocytes and neurons may function as a network with bidirectional communication. Here we show that a Ca2+ elevation in astrocytes increases the frequency of excitatory as well as inhibitory miniature postsynaptic currents (mPSCs), without modifying their amplitudes. Thapsigargin incubation, microinjection of the Ca2+ chelator BAPTA, and photolysis of the Ca2+ cage NP-EGTA demonstrate that a Ca2+ elevation in astrocytes is both necessary and sufficient to modulate spontaneous transmitter release. This Ca2+-dependent release of glutamate from astrocytes enhances mPSC frequency by acting on NMDA glutamate receptors, because it is antagonized by D-2-amino-5-phosphonopentanoic acid (AP5) or extracellular Mg2+. These NMDA receptors are located extrasynaptically, because blockage specifically of synaptic NMDA receptors by synaptic activation in the presence of the open channel blocker MK-801 did not impair the AP5-sensitive astrocyte-induced increase of mPSC frequency. Therefore, astrocytes modulate spontaneous excitatory and inhibitory synaptic transmission by increasing the probability of transmitter release via the activation of NMDA receptors.  相似文献   

8.
The whole-cell configuration of the patch clamp technique was used to record miniature gamma-aminobutyric acidA (GABAA) receptor-mediated currents (in tetrodotoxin, 1 microM and kynurenic acid 1 mM) from CA3 pyramidal cells in thin hippocampal slices obtained from postnatal (P) day (P6-9) old rats. Switching from a Ca2+-containing to a nominally Ca2+-free medium (in which Ca2+ was substituted with Mg2+, in the presence or in the absence of 100 microM EGTA) did not change significantly the frequency or amplitude of miniature events. Superfusion of thapsigargin induced a concentration-dependent increase in frequency but not in amplitude of tetrodotoxin-resistant currents that lasted for the entire period of drug application. Mean frequency ratio (thapsigargin 10 microM over control) was 1.8+/-0.5, (n = 9). In nominally Ca2+-free solutions thapsigargin was ineffective. When bath applied, caffeine (10 mM), reversibly reduced the amplitude of miniature postsynaptic currents whereas, if applied by brief pressure pulses, it produced an increase in frequency but not in amplitude of spontaneous GABAergic currents. Superfusion of caffeine (10 mM) reversibly reduced the amplitude of the current induced by GABA (100 microM) indicating a clear postsynaptic effect on GABAA receptor. Superfusion of ryanodine (30 microM), in the majority of the cells (n = 7) did not significantly modify the amplitude or frequency of miniature events. In two of nine cells it induced a transient increase in frequency of miniature postsynaptic currents. These results indicate that in neonatal hippocampal neurons, mobilization of calcium from caffeine-ryanodine-sensitive stores facilitates GABA release.  相似文献   

9.
Existing protocols for the neural differentiation of mouse embryonic stem (ES) cells require extended in vitro culture, yield variable differentiation results or are limited to the generation of selected neural subtypes. Here we provide a set of coculture conditions that allows rapid and efficient derivation of most central nervous system phenotypes. The fate of both fertilization- and nuclear transfer-derived ES (ntES) cells was directed selectively into neural stem cells, astrocytes, oligodendrocytes or neurons. Specific differentiation into gamma-aminobutyric acid (GABA), dopamine, serotonin or motor neurons was achieved by defining conditions to induce forebrain, midbrain, hindbrain and spinal cord identity. Neuronal function of ES cell-derived dopaminergic neurons was shown in vitro by electron microscopy, measurement of neurotransmitter release and intracellular recording. Furthermore, transplantation of ES and ntES cell-derived dopaminergic neurons corrected the phenotype of a mouse model of Parkinson disease, demonstrating an in vivo application of therapeutic cloning in neural disease.  相似文献   

10.
The idea that astrocytes merely provide structural and trophic support for neurons has been challenged by the demonstration that astrocytes can regulate neuronal calcium levels. However, the physiological consequences of astrocyte-neuron signalling are unknown. Using mixed cultures of rat hippocampal astrocytes and neurons we have determined functional consequences of elevating astrocyte calcium levels on co-cultured neurons. Electrical or mechanical stimulation of astrocytes to increase their calcium level caused a glutamate-dependent slow inward current (SIC) in associated neurons. Microinjection of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) into astrocytes to prevent the stimulus-dependent increase in astrocyte calcium level, blocks the appearance of the neuronal SIC. Pharmacological manipulations indicate that this astrocyte-dependent SIC is mediated by extracellular glutamate acting on N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Additionally, stimulation of astrocytes reduced the magnitude of action potential-evoked excitatory and inhibitory postsynaptic currents through the activation of metabotropic glutamate receptors. The demonstration that astrocytes modulate neuronal currents and synaptic transmission raises the possibility that astrocytes play a neuromodulatory role by controlling the extracellular level of glutamate.  相似文献   

11.
The present experiments were designed to examine dopamine (DA) modulation of whole cell currents mediated by activation of N-methyl-D-aspartate (NMDA) receptors in visualized neostriatal neurons in slices. First, we assessed the ability of DA, D1 and D2 receptor agonists to modulate membrane currents induced by activation of NMDA receptors. The results of these experiments demonstrated that DA potentiated NMDA-induced currents in medium-sized neostriatal neurons. Potentiation of NMDA currents occurred at three different holding potentials, although it was more pronounced at -30 mV. It was mediated by D1 receptors, because it was mimicked by D1 agonists and blocked by exposure to a D1 antagonist. Activation of D2 receptors produced inconsistent effects on NMDA-induced membrane currents. Either decreases, increases, or no effects on NMDA currents occurred. Second, we examined the contributions of intrinsic, voltage-dependent conductances to DA potentiation of NMDA currents. Blockade of K+ conductances did not prevent DA enhancement of NMDA currents. However, voltage-activated Ca2+ conductances provided a major contribution to DA modulation. The dihydropyridine L-type Ca2+ channel blockers, nifedipine, and methoxyverapamil (D-600), markedly reduced but did not totally eliminate the ability of DA to modulate NMDA currents. The D1 receptor agonist SKF 38393 also enhanced Ba2+ currents in neostriatal neurons. Together, these findings provide evidence for a complex interplay between DA, NMDA receptor activation and dihydropyridine-sensitive Ca2+ conductances in controlling responsiveness of neostriatal medium-sized neurons.  相似文献   

12.
The present study was conducted to assess the intracellular signaling pathways mediated by receptors for ATP, uridine triphosphate (UTP), and 2-methylthio ATP (2-MeSATP), by monitoring patch-clamp currents and intracellular calcium mobilization in cultured rat cortical cerebral neurons. All three agonists evoked potassium currents and increased the intracellular free Ca2+ concentration ([Ca2+]i), and these effects were inhibited by the broad G-protein inhibitor guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS) but not by the Gi/o-protein inhibitor pertussis toxin (PTX). UTP-evoked currents were inhibited by either the phospholipase C inhibitor neomycin or the selective protein kinase C (PKC) inhibitor GF109203X, and the rise in cytosolic Ca2+ was inhibited by either neomycin or the inositol 1,4,5-trisphosphate (IP3) receptor antagonist heparin, indicating that the UTP receptor involved phospholipase C-mediated phosphatidylinositol signaling. In contrast, 2-MeSATP-induced currents and rise in cytosolic Ca2+ were not inhibited by either neomycin, or GF109203X, or heparin. 2-MeSATP elicited single-channel currents in the cell-attached patch-clamp configuration and also in excised patches. The G-protein activator GTP gamma S induced single-channel currents in a fashion that mimicked the effect of 2-MeSATP. These data suggest that 2 MeSATP activated potassium channels by a direct action of G-protein beta gamma subunits and increased [Ca2+]i by a mechanism independent of phospholipase C stimulation and IP3 production. ATP-evoked currents were partially inhibited by either neomycin or GF109203X, although the rise in cytosolic Ca2+ was not affected by these inhibitors. ATP produced single-channel currents with two major classes of the slope conductance (86 and 95 pS) in cell-attached patches, each of which is consistent with that achieved by 2-MeSATP (85 pS) or UTP (96 pS); the currents with the lower conductance were observed in the outside-out patch-clamp configuration. These results indicate that P2 receptors for UTP and 2-MeSATP are linked to a PTX-insensitive G-protein involving different signal transduction pathways and that ATP responses are mediated by both of these P2 receptors.  相似文献   

13.
We investigated lipopolysaccharide (LPS)-induced nitric oxide (NO) production by rat microglia in neuron-microglia and astrocyte-microglia cocultures to evaluate the influence of neurons and astrocytes on microglial activity. Microglial cells solely cultured in medium devoid of serine (Ser), glycine (Gly) hardly expressed inducible NO synthase (iNOS), while those cocultured with neurons and astrocytes expressed iNOS. When microglial cells and astrocytes were separately cultured by using tissue culture inserts, which allowed the microglial cells to be exposed to only diffusible factors arising from astrocytes, NO production was significantly enhanced. On the other hand, neurons, when separated from microglial cells by the inserts, could not activate microglial cells possibly due to lacking of direct contact between neurons and microglial cells. NO production in pure microglial cultures was significantly enhanced in the presence of Ser/Gly at concentrations higher than 25 microM. Conditioned media obtained from microglia culture and neuron-microglia coculture contained less than 10 microM of Ser and Gly, while media from astrocyte culture and astrocyte-microglia coculture contained 33-41 microM Ser and 20-26 microM Gly. Accordingly, astrocytes modulate the activity of microglial cells by secreting Ser and Gly. The present study proposes a novel metabolic coupling between astrocytes and microglial cells via amino acids.  相似文献   

14.
In the present work we investigated the mechanisms controlling the release of acetylcholine (ACh) and of gamma-aminobutyric acid (GABA) from cultures of amacrine-like neurons, containing a subpopulation of cells which are simultaneously GABAergic and cholinergic. We found that 81.2 +/- 2.8% of the cells present in the culture were stained immunocytochemically with an antibody against choline acetyltransferase, and 38.5 +/- 4.8% of the cells were stained with an antibody against GABA. Most of the cells containing GABA (87.0 +/- 2.9%) were cholinergic. The release of acetylcholine and GABA was mostly Ca2+-dependent, although a significant release of [3H]GABA occurred by reversal of its transporter. Potassium evoked the Ca2+-dependent release of [3H]GABA and [3H]acetylcholine, with EC50 of 31.0 +/- 1.0 mm and 21.6 +/- 1.1 mm, respectively. The Ca2+-dependent release of [3H]acetylcholine was significantly inhibited by 1 micrometer tetrodotoxin and by low (30 nm) omega-conotoxin GVIA (omega-CgTx GVIA) concentrations, or by high (300 nm) nitrendipine (Nit) concentrations. On the contrary, the release of [14C]GABA was reduced by 30 nm nitrendipine, or by 500 nm omega-CgTx GVIA, but not by this toxin at 30 nm. The release of either transmitters was unaffected by 200 nm omega-Agatoxin IVA (omega-Aga IVA), a toxin that blocks P/Q-type voltage-sensitive Ca2+ channels (VSCC). The results show that Ca2+-influx through omega-CgTx GVIA-sensitive N-type VSCC and through Nit-sensitive L-type VSCC induce the release of ACh and GABA. However, the significant differences observed regarding the Ca2+ channels involved in the release of each neurotransmitter suggest that in amacrine-like neurons containing simultaneously GABA and acetylcholine the two neurotransmitters may be released in distinct regions of the cells, endowed with different populations of VSCC.  相似文献   

15.
We studied the effects of activation of the metabotropic glutamate receptors on intrinsic currents of magnocellular n urons of the supraoptic nucleus (SON) with whole cell patch-clamp and conventional intracellular recordings in coronal slices (400 micron) of the rat hypothalamus. Trans-(+/-)-1-amino-1,3-cyclopentane dicarboxylic acid (trans-ACPD, 10-100 microM), a broad-spectrum metabotropic glutamate receptor agonist, evoked an inward current (18.7 +/- 3.45 pA) or a slow depolarization (7.35 +/- 4.73 mV) and a 10-30% decrease in whole cell conductance in approximately 50% of the magnocellular neurons recorded at resting membrane potential. The decrease in conductance and the inward current were caused largely by the attenuation of a resting potassium conductance because they were reduced by the replacement of intracellular potassium with an equimolar concentration of cesium or by the addition of potassium channel blockers to the extracellular medium. In some cells, trans-ACPD still elicited a small inward current after blockade of potassium currents, which was abolished by the calcium channel blocker, CdCl2. Trans-ACPD also reduced voltage-gated and Ca2+-activated K+ currents in these cells. Trans-ACPD reduced the transient outward current (IA) by 20-70% and/or the IA-mediated delay to spike generation in approximately 60% of magnocellular neurons tested. The cells that showed a reduction of IA generally also showed a 20-60% reduction in a voltage-gated, sustained outward current. Finally, trans-ACPD attenuated the Ca2+-dependent outward current responsible for the afterhyperpolarization (IAHP) in approximately 60% of cells tested. This often revealed an underlying inward current thought to be responsible for the depolarizing afterpotential seen in some magnocellular neurons. (RS)-3,5-dihydroxyphenylglycine, a group I receptor-selective agonist, mimicked the effects of trans-ACPD on the resting and voltage-gated K+ currents. (RS)-alpha-methyl-4-carboxyphenylglycine, a group I/II metabotropic glutamate receptor antagonist, blocked these effects. A group II receptor agonist, 2S,1'S,2'S-2carboxycyclopropylglycine and a group III receptor agonist, (+)-2-amino-4-phosphonobutyric acid, had no effect on the resting or voltage-gated K+ currents, indicating that the reduction of K+ currents was mediated by group I receptors. About 80% of the SON cells that were labeled immunohistochemically for vasopressin responded to metabotropic glutamate receptor activation, whereas only 33% of labeled oxytocin cells responded, suggesting that metabotropic receptors are expressed preferentially in vasopressinergic neurons. These data indicate that activation of the group I metabotropic glutamate receptors leads to an increase in the postsynaptic excitability of magnocellular neurons by blocking resting K+ currents as well as by reducing voltage-gated and Ca2+-activated K+ currents.  相似文献   

16.
Astrocytic contribution of endothelial cell monolayer permeability was examined in two blood-brain barrier (BBB) models, using the coculture in a double chamber system: rat astrocytes and bovine aortic endothelial cells (BAECs) or bovine brain endothelial cells (BBECs). In system 1, where astrocytes were separated from endothelial cells, a 40% reduction in L-glucose permeability of the BBEC monolayer, but not the BAEC monolayer, was observed by cocultivation with astrocytes. Although several passages of BBEC in culture elicited morphological transformation from spindle-shapes to cobblestone-like features, the passaged BBECs remained responsive to astrocytes in coculture in system 1 (37% reduction of the L-glucose permeability). By contrast, in system 2, where respective endothelial cells and astrocytes layered on the upper and lower surfaces of a membrane, the permeability of both BAEC and BBEC monolayers was reduced by cocultivation with astrocytes (75% reduction for BAEC and 40% reduction for BBEC). BAECs in this contiguous coculture (system 2) with astrocytes showed numerous tight junction-like structures characteristic of the BBB in vivo. These results suggest that primary cultured BBECs, which had been primed by astrocytes in vivo, retain a higher sensitivity to astrocytes possibly through an astrocytic soluble factor (s) to exhibit BBB-specific phenotypes, and that even BAEC from extra-neural tissues, when cultured with astrocytes in close proximity in vitro, may acquire the similar phenotypes and serve for an extensive use of BBB model in vitro.  相似文献   

17.
The contribution of L-, N-, P- and Q-type Ca2+ channels to excitatory and inhibitory synaptic transmission and to whole-cell Ba2+ currents through Ca2+ channels (Ba2+ currents) was investigated in rat hypothalamic neurons grown in dissociated cell culture. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were evoked by stimulating individual neurons under whole-cell patch-clamp conditions. The different types of high-voltage-activated (HVA) Ca2+ channels were identified using nifedipine, omega-Conus geographus toxin VIA (omega-CTx GVIA), omega-Agelenopsis aperta toxin IVA (omega-Aga IVA), and omega-Conus magus toxin VIIC (omega-CTx MVIIC). N-, but not P- or Q-type Ca2+ channels contributed to excitatory as well as inhibitory synaptic transmission together with Ca2+ channels resistant to the aforementioned Ca2+ channel blockers (resistant Ca2+ channels). Reduction of postsynaptic current (PSC) amplitudes by N-type Ca2+ channel blockers was significantly stronger for IPSCs than for EPSCs. In most neurons whole-cell Ba2+ currents were carried by L-type Ca2+ channels and by at least two other Ca2+ channel types, one of which is probably of the Q-type and the others are resistant Ca2+ channels. These results indicate a different contribution of the various Ca2+ channel types to excitatory and inhibitory synaptic transmission and to whole-cell currents in these neurons and suggest different functional roles for the distinct Ca2+ channel types.  相似文献   

18.
The possible existence of a humoral communication between glial cells and LHRH-secreting neurons has been studied using the LHRH-secreting GT1-1 cell line and type 1 astrocytes. Two different designs have been adopted: 1) GT1-1 cells were coincubated with purified cultures of type 1 rat astrocytes, and 2) GT1-1 cells were exposed to the conditioned medium (CM) in which type 1 rat astrocytes had been grown for 24 h. LHRH was measured by RIA in the medium of the GT1-1 cell cultures at different time intervals. The data show that short periods (1, 3, and 6 h) of either coculture or exposure to previously frozen CM significantly increase the release of LHRH from the GT1-1 cells. However, more prolonged times of coculture (e.g. 2 and 5 days) or exposure to CM (e.g. 48 h) induce a significant decrease in the amount of LHRH in the medium. The stimulatory effect on LHRH release appears to be specific for type 1 astrocytes (either cortical or hypothalamic), because neither the CM of oligodendrocytes nor the CM of LNCaP cells (a cell line derived from a human prostatic cancer) possess stimulating activities. Heating the type 1 astrocyte-CM to 100 C for 10 min does not eliminate the ability of the CM to significantly increase the release of LHRH from GT1-1 cells at 1, 3, and 6 h. Because of the opposite effects encountered in the short and long term experiments, it was hypothesized that the CM might contain, in addition to LHRH-releasing principle(s), LHRH-degrading properties. Known amounts of standard LHRH were then added to type 1 astrocyte-CM, either untreated or submitted to heating at 100 C for 10 min. The amount of LHRH added to untreated CM decreases progressively; on the contrary, the amount of LHRH added to heated CM remains unchanged. These results confirm that one or more heat-sensitive enzymes able to degrade LHRH may be present in the type 1 astrocyte-CM. As previously mentioned, the experiments reported so far were performed using type 1 astrocyte-CM that had been kept frozen for various periods of time, before being tested for its LHRH-releasing activity. Surprisingly, fresh CM proves to be inactive, whereas heated CM is effective; this suggests that the factor involved might be activated by the two opposite experimental procedures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The potential influence of GABAergic input to cholinergic basalis neurons was studied in guinea-pig basal forebrain slices. GABA and its agonists were applied to electrophysiologically-identified cholinergic neurons, of which some were labelled with biocytin and confirmed to be choline acetyltransferase-immunoreactive. Immunohistochemistry for glutamate decarboxylase was also performed in some slices and revealed GABAergic varicosities in the vicinity of the biocytin-filled soma and dendrites of electrophysiologically-identified cholinergic cells. From rest (average - 63 mV), the cholinergic cells were depolarized by GABA. The depolarization was associated with a decrease in membrane resistance and diminution in firing. The effect was mimicked by muscimol, the specific agonist for GABA(A) receptors, and not by baclofen, the specific agonist for GABA(B) receptors, which had no discernible effect. The GABA- and muscimol-evoked depolarization and decrease in resistance were found to be postsynaptic since they persisted in the presence of solutions containing either high Mg2+/low Ca2+ or tetrodotoxin. They were confirmed as being mediated by a GABA(A) receptor, since they were antagonized by bicuculline. The reversal potential for the muscimol effect was estimated to be approximately -45 mV, which was -15 mV above the resting membrane potential. Finally, in some cholinergic cells, spontaneous subthreshold depolarizing synaptic potentials (average 5 mV in amplitude), which were rarely associated with action potentials, were recorded and found to persist in the presence of glutamate receptor antagonists but to be eliminated by bicuculline. These results suggest that GABAergic input may be depolarizing, yet predominantly inhibitory to cholinergic basalis neurons.  相似文献   

20.
The effects of various calcium (Ca2+) loads imposed through whole-cell patch electrodes on dentate gyrus granule cells were investigated on synaptic GABAA receptor-channels. The kinetics of spontaneous inhibitory postsynaptic currents (sIPSCs) were similar when recorded without any exogenous Ca2+ buffers in the patch electrode or with up to 30 mM BAPTA in the pipette. Unbuffered Ca2+ concentrations of 20-100 microM in the patch pipettes induced a gradual prolongation of miniature IPSC (mIPSC) decays over the course of the recording (10-40 min) with no apparent change in their rise times, peak amplitudes, or frequency of occurrence. This effect was not mimicked by other divalent cations such as strontium. Infusion into the cells of free ionic Ca2+ concentrations buffered with various affinity chelators in the pipette had more pronounced effects on synaptic GABAA currents. Free ionic Ca2+ buffered in the range of 200-400 nM with BAPTA prolonged the decay time constant of mIPSCs. Introducing buffered Ca2+ into the neurons in excess of 1 microM, with a relatively low affinity buffer such as Br2BAPTA, resulted in a marked inhibition of mIPSCs. A similar effect was observed following release of Ca2+ from intracellular stores induced by caffeine (10 mM). We conclude that Ca2+ has a biphasic effect on synaptic GABAA receptor-channels. A high affinity potentiation, consistent with a prolongation of channel burst duration, and a low affinity depression of channel activity both contribute to a complex regulation of synaptic GABAA receptors by [Ca2+]i that has a profound bearing on cellular mechanisms of plasticity and pathological alterations in neuronal excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号