首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
Experiments on the thermal decomposition of wet wood in air were carried out in this work. The samples (typically 100×100 mm exposed surface, 15 mm thick) of several species with moisture content from 5% to 30% were subjected to a uniform heat flux 20–70 kW m−2. A one-dimensional pyrolysis model is proposed to examine the influence of heat flux, species and moisture content on the process of thermal decomposition of wet wood. Temperature profiles at different points and solid conversion are calculated and compared with experimental data. There is good agreement between the experimental and calculated results.  相似文献   

2.
《Fire Safety Journal》1996,26(3):241-268
Ignition and burning rate data are developed for nylon 6/6, polyethylene, polypropylene and black polycast PMMA in a cone calorimeter heating assembly. The objective is to examine a testing protocol that leads to the prediction of ignition and burning rate for thermoplastics from cone calorimeter data. The procedure consists of determining material properties, i.e. thermal inertia, specific heat, thermal conductivity, ignition temperature, heat of gasification and flame heat flux from cone data, and utilizing these properties in a model to predict the time to ignition and transient burning rate. The procedure is based on the incident flame heat flux being constant in the cone calorimeter which occurs for flames above the top of the cone heater. A constant net flame heat flux of approximately 20 kW/m2 for nylon 6/6, 19 kW/m2 for polyethylene, 11 kW/mP2 for polypropylene and 28 kW/m2 for black PMMA is obtained for irradiation levels ranging from 0 to 90 kW/m2. The burning rate model is shown to yield good accuracy in comparison to measured transient burning in the cone assembly.  相似文献   

3.
Experimental techniques such as the cone calorimeter, representing realistic fire conditions, and the thermogravimetric analyser (TGA) combined with evolved gas analysis (EGA) can be used to determine flammability and degradation properties of materials. The desire is to correlate the flammability properties measured in the cone calorimeter for samples of size 100 mm×100 mm with those measured or deduced from TGA combined with EGA for milligram samples. Such an achievement will allow the design of fire-safe materials by quickly assessing (a) the fire safety of materials in their earliest milligram formulation and (b) the dependence of their flammability properties on the molecular structure of the material. In the present study, a cone calorimeter and TGA investigation is conducted for commercial Nordic Spruce wood impregnated by mono-ammonium phosphate (fire retardant, FR) through a vacuum pressure method. Experiments in the cone calorimeter with increasing FR concentrations indicated that (a) the char yields increased, (b) the apparent ignition temperature increased, (c) time to piloted ignition increased, (d) the total amount of heat released was reduced, (e) the peak heat release rate was reduced and (f) the carbon monoxide and smoke yields increased especially before ignition occurred. By comparison, char yields also increased with FR content in the TGA degradation experiments in nitrogen. The increase in the char yield with FR content explains quantitatively the decrease in the heat release in the cone calorimeter. By contrast, the onset temperatures measured in TGA decreased, whereas the ignition temperature deduced in the cone calorimeter increased with FR content. This difference is attributed to reduced yield of levoglucosan (reported in recent literature using TGA/EGA) with increased char yield as well as to the presence of phosphorous containing moieties in the volatiles, which both can quench piloted ignition. Finally, the TGA measurements showed that the FR concentrations decreased for milligram samples at different distances from the surface of the wood used in the cone calorimeter measurements. The variation of FR retardant with depth needs to be considered when using TGA data to interpret cone calorimeter measurements and the fire performance of the FR wood in approval tests such as the single burning item (SBI).  相似文献   

4.
《Fire Safety Journal》2006,41(6):427-443
This paper investigates the role of self-heating in the smoldering ignition of 18 mm (three-quarter inch) thick maple plywood exposed to radiant heat fluxes between 6 and 15 kW/m2 in the cone calorimeter for up to 8 h. The minimum heat flux for smoldering ignition was experimentally determined to be 7.5 kW/m2. This compares favorably to predictions made using classical self-heating theory. The role of self-heating was explored via temperature measurements distributed within the specimens. Elevated subsurface temperature profiles indicated self-heating was an important ignition factor resulting in ignition at depth with smolder propagation to the surface and into the material. The ignition depth was shown to be a function of the heat flux with the depth moving towards the surface as the heat flux increased.  相似文献   

5.
EcoSmartFire is a Windows program that models heat damage and piloted ignition of structures from radiant exposure to discrete landscaped tree fires. It calculates the radiant heat transfer from cylindrical shaped fires to the walls and roof of the structure while accounting for radiation shadowing, attenuation, and ground reflections. Tests of litter burn, a 0.6 m diameter fire up to 250 kW heat release under a Heat Release Rate (HRR) hood, with Schmidt-Boelter heat flux sensors in the mockup wall receiving up to 5 kW/m2 radiant flux, in conjunction with Fire Dynamic Simulator (FDS) modeling verified a 30% radiant fraction, but indicated the need for a new empirical model of flame extinction coefficient and radiation temperature as function of fire diameter and heat release rate for use in ecoSmartFire. The radiant fluxes predicted with both ecoSmartFire and FDS agreed with SB heat flux sensors to within a few percent errors during litter fire growth. Further experimental work done with propane flame heating (also with 30% radiant fraction) on vertical redwood boards instrumented with embedded thermocouples validated the predicted temperature response to within 20% error for both models. The final empirical correlation for flame extinction coefficient and temperature is valid for fire diameters between 0.2 and 7.9 m, with heat release rates up to 1000 kW. From the corrected radiant flux the program calculates surface temperatures for a given burn time (typically 30 s) and weather conditions (typically dry, windy, and warm for website application) for field applications of many trees and many structural surfaces. An example was provided for a simple house exposed to 4 burning trees selected on a Google enhanced mapping that showed ignition of a building redwood siding. These temperatures were compared to damage or ignition temperatures with output of the percentage of each cladding surface that is damaged or ignited, which a homeowner or a landscaper can use to optimize vegetation landscaping in conjunction with house exterior cladding selections. The need for such physics-based fire modeling of tree spacing was indicated in NFPA 1144 for home ignitability in wildland urban interface, whereas no other model is known to provide such capability.  相似文献   

6.
A series of small and large-scale tests were performed to measure the radiant transmission of energy and the window breakage characteristics of seven different multi-plane glazing samples. The samples tested included both double and triple-pane glazing specimens with a laminate interlayer between panes for additional strength. These test series were designed to provide the information necessary to assess the hazard from radiant energy to building occupants and contents due to a large fire in close proximity to a structure with a large amount of exterior windows. For incident heat fluxes 30 kW/m2 or lower, the triple-pane glazing samples had a total transmittance less than 10% of the incident heat flux, back-side surface temperatures did not exceed 100°C, and the back-side heat flux did not exceed 4 kW/m2. For double-pane laminates, the total transmittance was less than 25% of the incident heat flux, the back-side temperature did not exceed 220°C, and the back-side heat flux did not exceed 5 kW/m2. For incident heat fluxes greater than 30 kW/m2, the glazing samples degraded very quickly, generally buckling and losing integrity. The time for the first pane to crack decreased with increasing incident flux level. A number of tests included a water deluge system, which served to maintain sample integrity for extended exposures. In these cases, the total transmittance was less than 6% of the incident heat flux, back-side surface temperatures did not exceed 45°C, and the back-side heat flux did not exceed 1 kW/m2.  相似文献   

7.
8.
Many studies have utilized a small-scale experimental apparatus such as the cone calorimeter to investigate the piloted ignition of wood exposed to constant levels of incident heat flux; however, there is a deficiency of similar studies related to the non-piloted ignition of wood exposed to time-varying heat fluxes which might represent more realistic fire exposures. In this study, a method was established for producing well-controlled, time-varying exposures using the conical radiant heater of a cone calorimeter. Experiments were conducted in which the incident flux, time to non-piloted ignition, and back-surface temperature of spruce wood were measured. Measured data were used in combination with a numerical heat transfer model to compute the time-dependent temperature distribution through each specimen, and thereby deduce the surface temperature at ignition. From the 30 specimens tested, the average surface temperature for non-piloted ignition of wood was determined to be 521±10 °C. From this surface temperature range, the heat transfer model was used to predict the range of time over which non-piloted ignition was likely to occur for a given time-varying exposure. This procedure was found to produce excellent predictions of ignition time for the time-varying exposures considered in this study. In addition, several existing ignition models were considered, and their suitability for predicting the non-piloted ignition of wood was assessed.  相似文献   

9.
10.
The ignition and burning characteristics of individual un-mounted automotive tires are presented including heat release rate and heat flux. The propensity for ignition at various locations on the tire is discussed. The burning characteristics of the tire are discussed for both accelerated and non-accelerated fires along with the effects of tire orientation on burning behavior. Ignition by non-accelerated means was only successful at the tire bead. Ignition location was found to have an effect on time to fire growth and overall burning duration with times ranging from 16.5 min to 47.5 min. Duration of significant burning was 25 min to 30 min for the sidewall orientation and 10 min to 15 min for the on-tread orientation. Tires in the on-tread orientation provide a substantially greater heat release rate (350 kW to 450 kW) and corresponding radiant ignition hazard (20 kW/m2 to 35 kW/m2) than the sidewall orientation (200 kW and 10 kW/m2 to 13 kW/m2).  相似文献   

11.
《Fire Safety Journal》2005,40(3):197-212
Ignition, pyrolysis and burning of materials in reduced oxygen atmospheres occur when recirculating combustion gases are mixed with the air flowing into an enclosure. Still the incoming air can be sufficient for the complete combustion of the pyrolysis gases. Thus, for the prediction of fires in enclosures it is essential to understand the ignition and burning of materials in a reduced oxygen atmosphere even when plenty of oxidizer is available for complete combustion. Previous work employing gaseous fuels has shown that under these conditions, but before extinction, burning of gaseous fuels issuing from a nozzle is complete but radiation from the flames decreases owing to the reduction of their temperature. Complementary to that work, piloted ignition of solids is investigated here at reduced oxygen concentrations by measuring the ignition times and mass loss rates of the solid at ignition.These results were obtained in a cone calorimeter modified to supply air at reduced oxygen concentrations. Two types of plywood, normal and fire retardant 4 mm thick were examined at three imposed heat fluxes 25, 35 and 50 kW/m2 and at oxygen concentrations of 21%, 18% and 15% by volume. Because heating at these heat fluxes and material thickness corresponds to intermediate thermal conditions (i.e. neither thin nor thick), novel analytical solutions are developed to analyze the data and extract the thermal and ignition properties of the material. The same novel solutions can be applied to modeling concurrent or countercurrent flame spread. Moreover, a theory for piloted ignition explains why the ignition times and mass pyrolysis rates are weakly dependent on reduced oxygen concentrations.  相似文献   

12.
The effects of nanoclay (organoclay) and fire retardants (aluminium tri-hydroxide and magnesium hydroxide) on the fire retardancy of a polymer blend of ethylene-vinyl acetate (EVA) and low-density polyethylene (LDPE) were assessed using thermogravimetric analysis (TGA) and the cone calorimeter. TGA measurements were conducted in nitrogen and air atmospheres at different heating rates (1–20 °C/min), whilst in the cone calorimeter square samples were tested under various external heat fluxes (15–60 kW/m2). The TGA results indicate that the nanoclay (NC) alone has little effect on the degradation of the polymer blend, whereas aluminium tri-hydroxide (ATH) and magnesium hydroxide (MH), used as fire retardants (FRs), generally decrease the onset degradation temperature and also reduce the peak mass loss rate. However, it was found in the cone calorimeter that, though having negligible effect on ignition, the nanoclay reduces the heat release rate (HRR), and increases smoke and CO yields. In comparison, FRs (ATH or MH) were found to delay ignition owing to loss of water at lower temperatures, reduce the HRR, and have similar smoke and CO yields compared to the polymer blend. The reduced HRRs for both the nanoclay and FRs can be attributed to the formation of a surface layer (a nano layer for nanoclay and a ceramic-like layer of Al2O3/MgO for FRs), which acts as mass and heat barriers to the unpyrolysed material underneath. The global effect of the surface layer for the polymer blend nanocomposite was examined using a previously developed numerical model, and a methodology for predicting the mass loss rate was subsequently developed and validated.  相似文献   

13.
The thermal buckling of an axially restrained composite column that is exposed to a heat flux due to fire is studied by both analytical and experimental means. The column is exposed to fire from one-side and the resulting heat damage, the charred layer formation and non-uniform transient temperature distribution are calculated by the thermal model developed by Gibson et al. (Revue de l’Institute Francais du Petrole 50:69–74, 1995). For the thermal buckling analysis, the mechanical properties of the fire-damaged (charred) region are considered negligible; the degradation of the elastic properties with temperature (especially near the glass transition temperature of the matrix) in the undamaged layer, is accounted for by using experimental data for the elastic moduli. Due to the non-uniform stiffness and the effect of the ensuing thermal moment, the structure behaves like an imperfect column, and responds by bending rather than buckling in the classical Euler (bifurcation) sense. Another important effect of the non-uniform temperature is that the neutral axis moves away from the centroid of the cross section, resulting in another moment due to eccentric loading, which would tend to bend the structure away from the fire. In order to verify the mechanical response, the compressive buckling behavior of the same material subjected to simultaneous high intensity surface heating and axial compressive loading were investigated experimentally. Fire exposure was simulated by subjecting the surface of rectangular specimens to radiant heating in a cone calorimeter. Heat flux levels of 25 kW/m2, 50 kW/m2 and 75 kW/m2 were studied. All specimens exhibited buckling and subsequent catastrophic failure, even at compressive stresses as low as 3.5 MPa under a surface heat flux of 25 kW/m2. Details of the experimental procedure, including modifications made to a cone calorimeter to allow simultaneous mechanical loading are presented.  相似文献   

14.
《Fire Safety Journal》1996,26(3):221-240
Ignition and burning rate data are developed for thick (25 mm) black Polycast PMMA in a cone calorimeter heating assembly. The objective is to establish a testing protocol that will lead to the prediction of ignition and burning rate from cone data. This is done for a thermoplastic like PMMA. The incident flame heat flux, for irradiation levels of 0–75 kW/m2, is found to be approximately 37 kW/m2 for black PMMA. Its constancy is shown due to the geometry of the cone flame. Also, this flame is shown to be nearly transparent for cone irradiance (>90%). The heat of gasification of the black PMMA used is found to be approximately 2.8 kJ/g; higher than values reported for other PMMA samples. This is believed to be due to differences in molecular structure or pigmentation of the PMMA tested. A burning rate model is demonstrated to yield good accuracy in comparison to measured transient values. An exact solution is found for constant heat flux conditions.  相似文献   

15.
利用锥形量热仪对超高温耐火电缆在不同辐射功率下的点燃时间(TTI)、热释放速率(HRR)、质量损失速率(MLR)和燃烧残余物进行了研究。研究表明,随着辐射功率增加,耐火电缆的TTI逐渐缩短,HRR和MLR逐渐增大,火灾危险性逐渐增加。超高温耐火电缆在35 kW/m2和50 kW/m2辐射功率下火灾性能指数相比于25 kW/m2分别增加了44.4%和176.5%,火灾增长指数分别增加了30.4%和83.0%。结合理论分析可以得出,耐火电缆的临界辐射功率为3.61 kW/m2、零辐射平均热释放速率为36.5 kW/m2,表现出较低的火灾危险性。  相似文献   

16.
The paper deals with numerical modeling of heat and moisture transfer behavior of a fabric slab during combined drying and pyrolysis. The model incorporates the heat-induced changes in fabric thermo physical properties and the drying process is described by a one-step chemical reaction in the model. The new model has been validated by experimental data from modified Radiant Protective Performance (RPP) tests of fabrics. Comparisons with experimental data show that the predictions of mass loss rates, temperature profiles within the charring material and skin simulant, and the required time to 2nd skin burn are in reasonably good agreement with the experiments. It is concluded that moisture increases the time to 2nd degree skin burn for fabrics exposed to low intensity heat flux of 21 kW/m2, but under high heat flux exposures, such as 42 kW/m2, moisture tend to increase heat transfer through the thermal protective fabric system and the tolerance time of the same fabrics will reduce. The model can find applications not only in thermal protective clothing design, but also in other scientific and engineering fields involving heat transfer in porous media.  相似文献   

17.
Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be defined by a threshold value on the wall heat flux. From steady wall flame measurements, three definitions of flame height from wall heat flux are retained: the first is based on the continuous flame while the two others are based on threshold values of 4 kW/m2 and 10 kW/m2. These definitions are applied to determine flame heights from a two-dimensional time-dependent CFD model used to describe flame spread on a vertical slab of PMMA. Results show that the predicted flame heights are consistent with the available data of the literature. Defining flame height by threshold values on the wall heat flux of 4 and 10 kW/m2 allows the correlation of the wall heat flux in terms of (xxp)/(xflxp), which is the dimensionless characteristic length scale for upward flame spread. It is also found that the continuous flame is not a characteristic length for the heat transfer to the unburnt fuel and is not really appropriate to define flame height in upward flame spread.  相似文献   

18.
Three full-scale fire tests were performed with an area initiating fire in a combustible lined corner with a ceiling. In each of the three tests, the mock corner was lined with a different combustible material, plywood and two different composite materials. The area initiating fire was one of the ISO 9705 recommended standard ignition sources, a 0.17 m square propane sand burner with a heat release of 100 kW for 10 min followed by 300 kW for 10 min. Measurements of flame fronts, surface temperature, gas temperature, total heat flux, and total heat release rate were made during each of these tests. Heat flux and gas temperature data were found to be well represented by correlations developed from noncombustible fire tests.  相似文献   

19.
Computational fluid dynamics (CFD) calculations were carried out to design total flooding fire tests in a 28 m3 compartment for an ultra fine water mist (<10 μm). The exit momentum of the mist produced by a proprietary ultrasonic generator technology was extremely low with a mist discharge velocity below 1 m/s. The mist was discharged with multiple floor outlets equally spaced around the centrally located 120 kW pool-like gas fire. The transport of mist and its interaction with the fire was simulated by Fluent, a commercial CFD model. Lagrangian Discrete Phase Model (DPM) was used for droplets. Simulation predicted extinguishment within 10 s with a mist delivery rate of 1 l/min. However, in total flooding fire tests conducted, extinction times were more than 5 min. Additional computations approximating the ultra fine mist (UFM) as a dense gas agreed well with the observed transport timescales of minutes indicating that UFM behaves like a gas. Further, the mist–fire interaction needs a multi-phase Euler–Euler approach with a droplet vaporization model.  相似文献   

20.
The focus of this paper is to determine flammability characteristics of rubber materials that are common to vehicle tires, conveyor belts, and electrical power cable insulation and to compare the thermal magnitude of cargo quantities of these materials to other fuels that are publicly transported. Although a literature review was performed, very little data was found on this topic. Standard flammability test procedures were used to measure the critical flux for ignition, critical ignition temperature, and heat release rates (HRR) of rubber compounds common to tire tread materials and conveyor belt covers. Both the intermediate scale calorimeter: ISO 14696, ASTM E-1623 (ICAL) and the cone calorimeter: ISO E-5660, ASTM 1354 (Cone) provided the bulk of the data. Critical ignition flux and vertical flame spread data for rubber based electrical insulations were determined using a radiant panel from a modified ASTM flame spread apparatus: ASTM E-162. thermogravimetric analysis was also used to evaluate thermal decomposition progression of selected test materials. Further, suppression tests were conducted on tire piles to evaluate agents to extinguish and control tire fires. Also, the HRR of the tire piles were measured and compared to work performed by others. Results confirm that the area heat release rate of rubber materials is directly proportional to exposure flux intensity. The critical exposure flux for ignition of a variety of rubber-based materials is approximately 20 kW/m2 to 30 kW/m2 and the critical temperature for piloted and non-piloted ignition were independent of exposure intensity at ~400°C and ~600°C respectively. In large quantities, rubber tire loads have total HRR comparable to the heat released from similar areas of liquid hydrocarbon spills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号