首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthetic anhydrous crystalline CaCO3 polymorphs—vaterite, aragonite and calcite—were tested using dilatometry and nanoindentation. Microstructural changes in the samples before and after measurements were observed under scanning electron microscope and their phase composition quantified with X-ray powder diffraction with the Rietveld method. The thermal expansion coefficients of vaterite and the hardness and elastic modulus of synthetic aragonite are reported for the first time. The physical and nanomechanical properties were measured under similar conditions for each CaCO3 polymorph. Aragonite, calcite and vaterite showed volumetric thermal expansion coefficient at 303 K of 49.2(8), 48.6(2) and 44.1(3) 10?6 K?1, respectively. The elastic modulus increased from 5(4), 16(7) to 31(8) GPa for aragonite, calcite and vaterite, respectively. Average hardness was found lower than values from the literature, ranging from 0.3 to 1.3 GPa. The results are considered of interest for the design of CaCO3-based materials for applications.  相似文献   

2.
In the earlier pressure-dependent Raman spectroscopic studies, it has been reported that BaTiO3 undergoes a tetragonal to cubic phase transition above ~ 2 GPa, whereas pressure-dependent X-ray absorption, X-ray diffuse scattering studies and pair distribution function studies have reported the presence of a low-symmetry rhombohedral phase above ~ 2.3 GPa. In this report, we present our pressure-dependent Raman spectroscopic studies on polycrystalline BaTiO3 which shows that it first undergoes a transition from tetragonal to orthorhombic/rhombohedral phase above ~ 2.6 GPa and then finally goes to the cubic phase above 8.4 GPa. Pressure-dependent synchrotron X-ray diffraction (SXRD) studies have also been carried out that provided rate of change of volume as a function of pressure resulting in bulk modulus of 215 ± 9 GPa.  相似文献   

3.
为了掌握多孔氧化铝模板的纳米力学性能,采用二次氧化法制备孔径在30~40nm之间且高度有序的纳米阵列氧化铝模板,并使用扫描电子显微镜(SEM)对其形貌进行表征;在原位纳米力学测试系统上进行微压痕实验,对样品表面力学性能(纳米硬度、模量)进行测试;利用原子力成像功能对实验区域扫描成像,在纳米尺度下观察和分析样品形貌.结果表明,AAO模板在同一深度处对应的硬度、模量值明显高于相应的基体材料铝,膜基体系的抗载能力明显提高;在压入深度为70~240nm时,AAO膜板的硬度和模量值分别为5.8GPa和106GPa,但从深度250nm时开始出现减小趋势;单晶铝与压针的接触为理想刚塑性接触,AAO模板与压针的接触为弹塑性接触.  相似文献   

4.
Ni25Te75 nanocrystalline alloy containing trigonal NiTe2 and Te nanocrystals was prepared through mechanochemical processing of pure elemental tellurium and nickel powders in argon atmosphere. The Ni25Te75 samples processed from 3 h to 30 h milling times were characterized by X-ray powder diffraction, transmission electron microscopy, magnetization and Raman spectroscopy. Trigonal NiTe2 crystals with average size of 16 nm can be obtained after only 3 h of processing time. For longer milling times, the trigonal NiTe2 phase becomes majority (about 70% with 30% for nanometric Te and no pure Ni was detected) and its average crystallite size slightly increases to 20 nm. Transmission electron microscopy images and electron diffraction patterns confirm the nanometric size of the crystalline domains in the agglomerated particles. The magnetic properties of the Ni25Te75 powders are dependent on synthesis time, suggesting a paramagnetic behavior mainly associated with the NiTe2 nanophase. Raman spectra showed peaks that can be associated with unreacted Te and tellurium oxides modes, but it also showed several modes that can be attributed to trigonal NiTe2 nanophase. The high-pressure experiments showed no phase transitions for NiTe2 up to 17 GPa and Te phase transitions from form I to forms II and III occurred simultaneously at 4.5 GPa, remaining up to 12 GPa; after that, only reflections of Te-III and the NiTe2 were observed. All the phase transitions observed with pressure are reversible after decompression. The bulk modulus determined from the least-squares fit of first-order Murnaghan equation of states is 110 GPa for the NiTe2 nanophase and 28 GPa for Te-I.  相似文献   

5.
Structural, vibrational, dielectric and electrical properties of (Na0.5Bi0.5)(Zr0.025Ti0.975)O3 ceramic synthesized by the solid-state reaction technique have been carried out. The X-ray diffraction analysis was indicated as a pure perovskite phase in the rhombohedral structure. The modes of rhombohedral vibrations were appeared in the experimental Raman spectrum at room temperature. The dielectric and electrical properties of the material were investigated by impedance spectroscopy analysis for a broad range of temperatures (50–560 °C) and frequency domain of 102?106 Hz. The dielectric measurement exhibit two phase transitions: a ferro-antiferroelectric transition followed by an antiferro-paraelectric transition at higher temperatures. Complex impedance analysis was carried out in order to distinct the contribution of the grains and the grain boundaries to the total electrical conduction. The Nyquist plot was proved to be a non-Debye relaxation mechanism. The combined spectroscopic plots of the imaginary part of electric impedance and modulus confirmed the non-Debye type behavior. The frequency dependent ac conductivity obeys the double power law behavior and shows three types of conduction process. The significant decrease of dc conductivity spectrum followed the Arrhenius relationship. The values of calculated activation energy of the compound implied that the electrical conduction is mostly due the high oxygen mobility.  相似文献   

6.
The electrical transport properties of nanocrystalline tungsten trioxides (WO3) under high pressures have been investigated by various electrical measurements up to 36.5 GPa. The discontinuous changes in direct-current resistivity under high pressures result from two electronic phase transitions at 4.3 and 10.5 GPa and two structural phase transitions at 24.8 and 31.6 GPa. Hall-effect measurement shows that the nanocrystalline WO3 is n-type semiconductor within the whole investigated pressure range. The carrier concentration decreases monotonously with increasing pressure, but mobility increases first and then decreases at 10.4 GPa. Through alternate-current impedance measurement, it can be found that the variation of the ratio of grain boundary resistance to grain resistance synchronizes with that of the mobility under high pressures, indicating that the grain boundary plays more important role in the carrier transport process of nanocrystalline WO3. The discontinuous changes of resistance and relaxation frequency of grain and grain boundary also provide the evidence for electronic phase transitions.  相似文献   

7.
The Mott transistor is a paradigm for a new class of electronic devices—often referred to by the term Mottronics—which are based on charge correlations between the electrons. Since correlation‐induced insulating phases of most oxide compounds are usually very robust, new methods have to be developed to push such materials right to the boundary to the metallic phase in order to enable the metal–insulator transition to be switched by electric gating. Here, it is demonstrated that thin films of the prototypical Mott insulator LaTiO3 grown by pulsed laser deposition under oxygen atmosphere are readily tuned by excess oxygen doping across the line of the band‐filling controlled Mott transition in the electronic phase diagram. The detected insulator to metal transition is characterized by a strong change in resistivity of several orders of magnitude. The use of suitable substrates and capping layers to inhibit oxygen diffusion facilitates full control of the oxygen content and renders the films stable against exposure to ambient conditions. These achievements represent a significant advancement in control and tuning of the electronic properties of LaTiO3+x thin films making it a promising channel material in future Mottronic devices.  相似文献   

8.
The modulus Spectroscopy of Lead Potassium Titanium Niobate (Pb0.95K0.1Ti0.25Nb1.8O6, PKTN) Ceramics was investigated in the frequency range from 45 Hz to 5 MHz and the temperature, from 30 to 600 °C. XRD analysis in PKTN indicated a orthorhombic structure with lattice parameters a = 18.0809 Å, b = 18.1909 Å and c = 3.6002 Å. The dielectric anomaly with a peak was observed at 510 °C. Variation of εI and εII with frequency at different temperatures exhibit high values, which reflects the effect of space charge polarization and/or conduction ion motion. The electrical relaxation in ionically conducting PKTN ceramic analyzed in terms of Impedance and Modulus formalism. The Cole–Cole plots of impedance were drawn at different temperatures. The dielectric modulus, which describes the dielectric relaxation behaviour is fitted to the Kohlrausch exponential function. Near the phase transition temperature, a stretched exponential parameter β indicating the degree of distribution of the relaxation time has a small value. From the AC conductivity measurements the activation energy near phase transition temperature (T C°C) has been found to different from that of the above and below T C. The temperature dependence of electrical modulus has been studied and results are discussed.  相似文献   

9.
Three types of nanomechanical methods including static nanoindentation, modulus mapping and peak-force quantitative nanomechanical mapping (QNM) were applied to investigate the quantitative nanomechanical properties of the same indent location in hardened cement paste. Compared to the nanoindentation, modulus mapping and peak-force QNM allow for evaluating local mechanical properties of a smaller area with higher resolution. Beside, the ranges of elastic modulus distribution measured by modulus mapping and peak-force QNM are relatively greater than that obtained from nanoindentation, which may be due to a result of the shaper probe and local confinement effect between multiple phases. Moreover, the average value of elastic modulus obtained using peak-force QNM were consistent with those obtained by modulus mapping, while the different in modulus probability distribution could be related to the different nanomechancial theories and contact forces. The probability distributions of elastic modulus measured using nanomechanical methods to provide a basis for the different types of phases existing in cement paste. Based on the observation with high spatial resolution, cement paste can be likely found as nanocalse granular material, in which different submicron scale or basic nanoscale grain units pack together. It indicates that the peak-force QNM can effectively provide an effective insight into the nanostructure characteristic and corresponding nanomechanical properties of cement paste.  相似文献   

10.
In this study, frequency dependent electrical properties of ex situ polycrystalline MgB2 sintered at 650–850?°C were investigated. Dielectric permittivity (ε′, ε″), dielectric loss (tan δ), alternating current (AC) conductivity (σac) as a function of frequency (100 Hz–10 MHz) were measured at room temperature. The X-ray diffraction (XRD) and grain morphology were analysed and correlated to the findings in dielectric properties. Due to weakly coupled grains and presence of high fraction of oxides, positive real dielectric permittivity was measured for the ex situ samples as compared with the negative real dielectric permittivity shown by the in situ MgB2. Nevertheless, the samples sintered at higher temperature showed improved grain connectivity as reflected by the higher AC conductivity and dielectric loss. The semicircle observed in the complex impedance plots together with the combined spectroscopy plots indicates that the electrical behavior of the ex situ samples is mainly due to the bulk and grain boundary responses as opposed to the sole bulk response of the in situ MgB2. The modelled equivalent circuit also suggests the presence of insulating grain boundary barrier (due to the oxide phases) next to the conducting bulk in the ex situ samples.  相似文献   

11.
We have performed the ab initio calculations based on density functional theory to investigate the B3–B1 phase transition and mechanical properties of ZnS. The elastic stiffness coefficients, C11, C12, C44, bulk modulus, Kleinman parameter, Shear modulus, Reuss modulus, Voigt modulus and anisotropy factor are calculated for two polymorphs of ZnS: zincblende (B3) and rocksalt (B1). Our results for the structural parameters and elastic constants at equilibrium phase are in good agreement with the available theoretical and experimental values. Using the enthalpy–pressure data, we have observed the B3 to B1 structural phase transition at 18.5 GPa pressure. In addition to the elastic coefficients under normal conditions, we investigate the pressure dependence of mechanical properties of both phases: up to 65 GPa for B1-phase and 20 GPa for B3-phase.  相似文献   

12.
Epitaxial Sm0.35Pr0.15Sr0.5MnO3 thin films were deposited on LaAlO3 (LAO, (001)), SrTiO3 (STO, (001)), and (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT, (001)) single-crystalline substrates by using pulsed laser deposition technique. In order to examine the strain effect on electronic and magnetic properties, films were studied by X-ray diffraction, electrical resistivity, and dc magnetization measurements. The film grown on LAO substrate is under compressive strain, and it undergoes ferromagnetic → paramagnetic transition at Curie temperature (T C) of ~ 165 K and metal → insulator transition at ~ 107 K. The films grown on STO and LSAT substrates are under tensile strain and have T C of ~ 120 and 130 K, respectively, and show metal → insulator transition at ~ 145 and 137 K, respectively. At T < T C, the zerofield and fieldcooled magnetization curves of all the films show a huge bifurcation. In the case of films on STO and LSAT substrates, hysteresis is also observed in fieldcooled cooling and warming magnetization vs. temperature measurement protocols at low magnetic field. All the signatures of the firstorder magnetic phase transition are absent in the case of film on LAO substrate. The occurrence and absence of firstorder magnetic phase transition in films on LAO, STO, and LSAT substrates, respectively, have been well explained through the substrateinduced film lattice strain.  相似文献   

13.
Melting of rhombohedral boron subnitride B13N2 has been studied in situ at pressures to 8 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa B13N2 melts incongruently, and the melting curve exhibits positive slope of 31(3) K/GPa that points to a lower density of the melt as compared to the solid phase.  相似文献   

14.
Different components of La0.7?x Ho x Sr0.3MnO3 (LHSMO, x = 0, 0.1, 0.2, 0.3) ceramics were fabricated by Plasma-Activated Sintering (PAS), so as to study the correlation between the contents of Ho3+ and the structural, electrical, magnetic properties. XRD and SEM confirmed that LHSMO ceramics prepared by PAS exhibited high-purity phase and dense microstructure. The measurement of electrical resistivity showed that the resistivity of LHSMO ceramics increased, and the metal–insulator transition temperature decreased with the increasing Ho-doping content. The resistivity data were then fitted using various empirical equations, and the conduction mechanism of LHSMO ceramics was found to be in accord with the electron–magnon scattering process in the low-temperature region and the small polaron hopping model in the high-temperature region. Lastly, we calculated the values of magnetoresistance of the LHSMO ceramics, which increased with increasing Ho-doping content, from 3.5% for x = 0 to 14.6% for x = 0.3. Therefore, the doping of Ho3+ into La0.7Sr0.3MnO3 can effectively enhance the low-field magnetoresistance effect.  相似文献   

15.
In this study, recent results from our electron, X-ray, and neutron-diffraction experiments with emphasis on the binary Bi1/2Na1/2TiO3-BaTiO3 (BNT–BT) and ternary Bi1/2Na1/2TiO3–BaTiO3–K0.5Na0.5NbO3 (BNT–BT–KNN) system are presented and contrasted with literature. The experimental results clearly revealed a phase coexistence on the nanoscale level. A systematic study of superlattice reflections in conjunction with microstructural characteristics showed that the BNT-based systems have specific properties in common, which, however, strongly depend on composition. In situ transmission electron microscopy (TEM) electric field experiments unequivocally demonstrated the evolution of lamellar domains. Combining in situ TEM results with published in situ neutron-diffraction experiments, we proposed an electric field-induced phase transition that results in the giant unipolar and bipolar strain observed in specific compositions of the ternary system.  相似文献   

16.
Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, T(c), of 200-400 K, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, T<100 K, showed that at record pressures of 300 GPa, hydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K; and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.  相似文献   

17.
X-ray absorption near edge structure (XANES) measurements at the Pr L1-edge of PrNiO3 exhibit a change across the metal insulator transition. This structural change is consistent with the observation of a lattice distortion, inferred from the Ni K-edge XANES spectra. Theoretical calculations of the XANES show that the observed features of the spectra are consistent with the orthorhombic structure in the metallic phase and a monoclinic structure in the insulating phase. The presence of such distortion provides a unified view of the structural change concurrent with the metal-insulator transition in the whole family RNiO3 (R being a rare earth atom).  相似文献   

18.
Three types of composite nanotube heterostructures (two double-layered and one triple-layered structure) are synthesized by simple heat treatment, forming SiC–SiO2, C–SiO2, and C–SiC–SiO2 composite coaxial nanotubes. These multilayered composite nanotubes consist of several components with different electrical properties, for example, metal, semiconductor, and insulator components. In particular, C–SiC–SiO2 triple-layered nanotubes with metallic, semiconducting, and insulating layers are synthesized for the first time. These multilayered nanotubes can be expected to find applications in nanoscale heterostructure electronic and optical devices.  相似文献   

19.
The analyses of resistivity experimental results of Pr0.67Ba0.33MnO3 (PBMO) and Pr0.67Sr0.33MnO3 (PSMO) manganites are presented. The electrical resistivity curves are fitted with the phenomenological percolation model, which is based on the phase segregation of ferromagnetic–metallic (FMM) clusters and paramagnetic–insulating (PMI) regions. The estimated results are in good agreement with experimental data. We found that the transition to the metallic state occurs if the volume fraction of the ferromagnetic phase reaches a percolation threshold, suggesting that the percolation of ferromagnetic (FM) domains is responsible for the observed metal–insulator (M–I) transition. According to the percolation model, we found that the energy gap of the quasi-particles in the phase separated FM and PM states is significantly smaller for PBMO than that for PSMO confirming that PSMO is more conductive than PBMO. We also found that the volume fraction of the ferromagnetic phase has the same physical meaning as the reduced magnetization.  相似文献   

20.
We characterized the elastic properties of GaN nanowires grown along different crystallographic orientations. In situ transmission electron microscopy tensile tests were conducted using a MEMS-based nanoscale testing system. Complementary atomistic simulations were performed using density functional theory and molecular dynamics. Our work establishes that elasticity size dependence is limited to nanowires with diameters smaller than 20 nm. For larger diameters, the elastic modulus converges to the bulk values of 300 GPa for c-axis and 267 GPa for a- and m-axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号