首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Thermal Engineering》2001,21(17):1813-1828
Influence of thermal emittance on the performance of laminated solar control glazing is presented. A transient one-dimensional mathematical model allowing the prediction of conductive heat transfer within the glazing and convective and radiative heat transfer from the glazing towards the interior and exterior are considered separately. A constant normal incidence of air mass 2 solar radiation of 750 W/m2 was assumed. The redistribution of the component of the solar radiation absorbed by the laminated glass and the shading coefficient (SC) were calculated for solar transmittance, 0.05 to 0.35; thermal emittance of the inner surface of the glazing, 0.15 to 0.85; convective heat transfer coefficient for the exterior surface, 10–100 W/m2 K and exterior ambient temperatures of 15°C, 32°C and 45°C. The results indicate that as the emittance decreases, the SC decreases by 10–20% for all cases of ambient temperatures considered. The contribution from the convective mechanisms to the heat transfer to the interior is always higher than that from radiative process in the range of ambient temperatures considered. The results presented in this paper would help to decide whether for a given location of interest, the incorporation of a heat mirror glazing would make a meaningful reduction in the cooling load in enclosures with single glazed windows.  相似文献   

2.
In this study, solar control coatings were prepared by sequential depositions of thin films of ZnS (40 nm)–CuS (150 nm) and ZnS (40 nm)–Bi2S3 (75 nm)–CuS (150 nm) from chemical baths on 3 mm thick commercial sheet glass. These were laminated to 3 mm thick clear glass or commercially available SnO2 based heat mirror coating of sheet resistance 15 Ω on float glass of 3 mm thickness using a poly(ethylene vinyl acetate), EVA, sheet of 0.36 mm thickness in a vacuum process at 120 °C for 30 min. In total, the thickness of the glazing was 6.35 mm. The glazings possess visible transmittance, weighted for D65 solar spectra and sensitivity of the human eye for daylight vision, of 36% or 14% with solar absorptance of 71% or 78% depending on the coating type, i.e ZnS–CuS or ZnS–Bi2S3–CuS-heat mirror respectively. The solar heat gain coefficient (SHGC) was evaluated for these glazings at exterior temperatures of 15 and 32 °C for an exterior convective heat transfer coefficient (hex) of 6–100 Wm−2 K−1 using a mathematical model. The model predicts the extent of reduction in SHGC through the presence of the heat mirror coating as a function of hex and hence helps to decide on the relative benefit, which may be derived through their use in different locations. Though the deposition technique mentioned here involves longer duration compared with vacuum techniques, it may be developed into a low throughput, low-capital alternate technology for small-scale production.  相似文献   

3.
The aim of this project was to investigate how the visual appearance and energy performance of switchable or smart windows can be improved by using antireflective coatings. For this study clear float glass, low-e glass and electrochromic glass were treated with antireflection (AR) coatings. Such a coating considerably increases the transmittance of solar radiation in general and the visible transmittance in particular. For switchable glazing based on absorptive electrochromic layers in their dark state it is necessary to use a low-emissivity coating on the inner pane of a double glazed window in order to reject the absorbed heat. In principle all surfaces can be coated with AR coatings, and it was shown that a thin AR coating on the low-e surface neither influences the thermal emissivity nor the U-value of the glazing. The study showed that the use of AR coatings in switchable glazing significantly increases the light transmittance in the transparent state. It is believed that this is important for a high level of user acceptance of such windows.  相似文献   

4.
Thermal performance of an electrochromic (EC) vacuum glazing (VG) was modelled under ASTM standard winter conditions. The EC VG comprised three 0.5 m by 0.5 m glass panes with a 0.12 mm wide evacuated space between two 4 mm thick panes sealed contiguously by a 6 mm wide indium based edge seal with either one or two low-emittance (low-e) coatings supported by a 0.32 mm diameter square pillar grid spaced at 25 mm. The third glass pane on which the 0.1 mm thick EC layer was deposited was sealed to the evacuated glass unit. The whole unit was rebated by 10 mm within a solid wood frame. The low-e coating absorbed 10% of solar energy incident on it. With the EC VG installed with the EC component facing the outdoor environment, for an incident solar radiation of 300 W m−2, simulations demonstrated that when the EC layer is opaque for winter conditions, the temperature of the inside glass pane is higher than the indoor air temperature, due to solar radiation absorbed by the low-e coatings and the EC layer, the EC VG is a heat source with heat transferred from the glazing to the interior environment. When the emittance was lower to 0.02, the outdoor and indoor glass pane temperatures of the glazing with single and two low-e coatings are very close to each other. For an insolation of 1000 W m−2, the outdoor glass pane temperature exceeds the indoor glass pane temperature, consequentially the outdoor glass pane transfers heat to the indoor glass pane.  相似文献   

5.
Buildings play a key role in total world energy consumption as a consequence of poor thermal insulation characteristics of facade materials. Among the elements of a typical building envelope, windows are responsible for the greatest energy loss because of their notably high overall heat transfer coefficients. About 60% of heat loss through the building fabric can be attributed to the glazed areas. In this respect, novel cost‐effective glazing technologies are needed to mitigate energy consumption, and thus to achieve the latest targets toward low/zero carbon buildings. Therefore in this study, three unique glazing products called vacuum tube window, heat insulation solar glass and solar pond window which have recently been developed at the University of Nottingham are introduced, and thermal performance analysis of each glazing technology is done through a comparative experimental investigation for the first time in literature. Standardized co‐heating test methodology is performed, and overall heat transfer coefficient (U‐value) is determined for each glazing product following the tests carried out in a calibrated environmental chamber. The research essentially aims at developing cost‐effective solutions to mitigate energy consumption because of windows. The results indicate that each glazing technology provides very promising U‐values which are incomparable with conventional commercial glazing products. Among the samples tested, the lowest U‐value is obtained from the vacuum tube window by 0.40 W/m2K, which corresponds to five times better thermal insulation ability compared to standard air filled double glazed windows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and “Sun”. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results.This paper reports the measured thermal efficiency and evaluation of 23 collectors which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, anti-reflection glass), the use of honeycomb material and the use of vacuum to reduce thermal convection losses. The collectors are given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance is made possible by tests at different incident angles. The solar performance rankings are made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.Another test which aids in selecting collectors is a collector heat capacity test. This test permits a ranking of collectors according to their heat capacity (and time constant), which is a measure of the rapidity of a collector's response to transient solar conditions. Results are presented for such tests.Final considerations for collector selection would of course be made on the basis of cost and the reliability of performance over the required life of a collector. Results of a cost-effectiveness study is given for conditions corresponding to those required for absorption or heating. These results indicate that the additional cost involved in the upgrading of collector performance (selective surfaces, anti-reflection glass, etc.) appears to be cost effective and therefore justified. Some data are also presented to illustrate a method for the determination of outdoor performance degradation by use of simulator tests carried out before and after a period of outdoor operation.  相似文献   

7.
The integrated collector–storage solar water heaters are less expensive and can offer the best alternative for domestic applications particularly to small families to meet hot water requirements. The top heat losses of such solar water heaters are quite high during the night and the temperature of stored hot water is considerably reduced unless covered with extra insulating cover in the evening which is a cumbersome job. The transparent insulation material widely used in Europe for space heating can also minimize top heat losses, if used in such solar water heaters. For this purpose, two units of solar collector cum storage water heaters have been designed to study the relative effect of TI for retaining solar heated hot water for a night duration. Both units were identical in all respects except one of them was covered with TIM. The theoretical exercise was carried out to evaluate design parameters of ISC which revealed total heat loss factor (UL) 1.03 W/m2 K with TIM glazed against 7.06 W/m2 K with glass glazed. The TIM glazed has been found to be quite effective as compared to glass glazed SWH and yielded hot water at higher temperature by 8.5 to 9.5°C the next morning. The storage efficiency of such solar water heaters has been found to be 39.8% with TIM glazed as compared to 15.1% without TIM. The TIM glazing means not having to cover the ISC solar water heater with a separate insulator cover in the evening and thus makes its operation much simpler.  相似文献   

8.
The problem of combined nongray radiative and conductive heat transfer in multiple glazing subjected to solar irradiation is analyzed. A spectral solar model proposed by Bird and Riordan is used to calculate direct and diffuse solar irradiance. The radiation element method by ray emission model, REM2, is used to analyze the spectral dependence of radiative heat transfer. Specular reflection at boundary surfaces is taken into account. The spectral dependence of radiation properties of glass such as specular reflectivity, refraction angle, and absorption coefficient is taken into account. The steady‐state temperature and heat flux distributions in the glass layer are obtained and the insulating efficiency of multiple glazing is examined. The overall heat transfer coefficients predicted by the present method are compared with those based on the JIS method. The values obtained by the present method are slightly lower than those obtained by the JIS method. To investigate the spectral variation of radiative heat flux attenuated in the glass layer, the spectral heat flux at the room‐side surface and incident radiation are compared. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(8): 712–726, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10125  相似文献   

9.
A mathematical model enabling the prediction of the thermal performance of solar control glazings employing chemically deposited solar control coatings with or without a transparent protective polymer coating is presented. Differential energy balance for the glazing is set up assuming one-dimensional steady state case for normal incidence of air mass 2 solar radiation and by considering conductive heat transfer within the glazing and convective and radiative heat transfer into the interior and exterior of the building. Using the specific example of the optical properties of the already reported SnS---CuxS solar control coatings, the redistribution of the absorbed component of the solar radiation is evaluated for constant convective heat transfer coefficient and temperature in the interior and for exterior temperatures in the 0–50°C range. The results yield shading coefficient versus exterior temperature curves for two specific SnS---CuxS coatings without and with a protective transparent varnish and offering transmittance in the visible region of 27 and 21%.  相似文献   

10.
The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m−2 K−1. The simulation results show that although the thermal conductivity of solder glass (1 W m−1 K−1) and indium (83.7 W m−1 K−1) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m−2 K−1. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system.  相似文献   

11.
The thermal performance of an electrochromic vacuum glazing and a vacuum glazing with a range of low-emittance coatings and frame rebate depths were simulated for insolations between 0 and 1000 W m−2 using a three-dimensional finite volume model. The vacuum glazing simulated comprised two 0.4 m×0.4 m glass panes separated by a 0.12 mm wide evacuated space supported by a 0.32 mm diameter pillar array spaced at 25 mm. The two glass sheets were sealed contiguously by a 6 mm wide metal edge seal and had either one or two low-emittance coatings. For the electrochromic vacuum glazing, a third glass pane on which an electrochromic layer was deposited was assumed to be sealed to an evacuated glass unit, to enable control of visible light transmittance and solar gain and thus improve occupant thermal comfort. It is shown that for both vacuum glazing and electrochromic vacuum glazings, when the coating emittance value is very low (close to 0.02), the use of two low-emittance coatings only gives limited improvement in glazing performance. The use of a single currently expensive low-emittance coating in both systems provided acceptable performance. Deeper frame rebate depths gave significant improvements in thermal performance for both glazing systems.  相似文献   

12.
Possible application of vacuum glazing (VG) units for transparent insulation of solar collectors (SC) to reduce their heat losses is considered. Taking into account the SC operating conditions, the heat insulating parameters of VG samples measuring 0.3 × 0.3 m2 and 0.5 × 0.5 m2 are experimentally studied and compared to those of double glazing (DG) of the same size. Basing on the experimental data, the order of the vacuum in the VG is calculated. The contribution of the vacuum gap to the total heat transfer resistance of the VG is evaluated.  相似文献   

13.
An experimental study was conducted in Thailand to determine the thermal performance of twin glazed windows with dynamic insulation. The effects of blinds situated either between or outside the glazing were analysed. With an external blind, the heat transfer coefficient was 1–25 W/m2°C with natural convection and 0–6 W/m2°C for a flow of 20m3/h (glass area = 2–16m2). The solar flux transmitted was evaluated analytically and experimentally depending on the blind's position. An economic study was performed on a six-sotrey air-conditioned building in Thailand. It showed in tropical countries that it may be more economical to use air flow windows than to have tinted single or double glass windows.  相似文献   

14.
Highly insulating aerogel glazing for solar energy usage   总被引:1,自引:0,他引:1  
Granular silica aerogels have been integrated into highly-insulating translucent glazing. This work was performed within the large R&D project ISOTEG pursued by the ZAE Bayern. To avoid settlement of the granules, which often occurred in earlier glazing concepts and even caused destruction of the glazing, the granules were sandwiched between a double skin sheet made of PMMA. The sheet was mounted between two low-e coated glass panes. To optimize the thermal insulation, krypton was used as filling gas. This construction allows to achieve heat transfer coefficients of less than 0.4 W/(m2 K). Optimized granular layers provide high solar transmittance of 65% for a thickness of 20 mm. Thus a total solar energy transmittance of 35% for the whole glazing unit is achieved. The glazing has a thickness of less than 50 mm. Such aerogel glazings can be integrated into solar wall systems or used as lightscattering daylighting elements with vanishing energy losses over the heating period even for north facade integration. Optical and thermal properties of the developed granular aerogels as well as the thermal properties of the whole glazing unit are reported.  相似文献   

15.
The advantage of PV–thermal hybrid systems is their high total efficiency. By using concentrating hybrid systems, the cost per energy produced is reduced due to simultaneous heat and electricity production and a reduced PV cell area. In this article, the optical efficiency of a water-cooled PV–thermal hybrid system with low concentrating aluminium compound parabolic concentrators is discussed. The system was built in 1999 in Älvkarleby, Sweden (60.5° N, 17.4° E) with a geometric concentration ratio of C=4 and 0.5 kWp electric power. The yearly output is 250 kWh of electricity per square metre solar cell area and 800 kWh of heat at low temperatures per square metre solar cell area. By using numerical data from optical measurements of the components (glazing, reflectors, and PV cells) the optical efficiency, ηopt, of the PV–CPC system has been determined to be 0.71, which is in agreement with the optical efficiency as determined from thermal and electrical measurements. Calculations show that optimised antireflection-treated glazing and reflectors could further increase the electric power yield.  相似文献   

16.
Although several empirical equations exist for heat loss factor in flat-plate collectors, no similar relation is available for the heat loss factor of a tubular absorber with a concentric glass cover, employed as the target of a linear solar concentrator. A semi-empirical equation for the heat loss factor as a function of the various variables involved is developed. A relatively simple equation for the factor f has also been proposed. The present equation predicts the overall heat loss factor, UL, to within ±5% of the value obtained by exact solution of the simultaneous equations, in the range of variables—absorber temperature, 60°C to 220°C, emittance of the black coating, 0.1 to 0.95, and wind velocity, 1.5 m/s to 10 m/s. The proposed correlation also takes into account the effect of property variations.  相似文献   

17.
This paper presents research results for better window materials for energy saving purposes. Three alternatives of glazing treatments were developed in this project: Cu2O, CuS + Cu2O, and Cu + Cu2O. The second and third alternatives present an adequate control in the infrared irradiance, achieving a significant reduction of the heat transfer through them. These windows allow the transmission of about half of the heat under hot weather condition, thus reducing the thermal load inside the building. The same windows also reduce the outwards flow of heat at half of the rate of windows without coating, improving comfort and reducing heat loss under cold weather conditions. The thin layers were produced using a sputtering technique with planar magnetrons. A high purity copper target (99.99%) was evaporated through plasma of argon–oxygen (70–30% respectively) in order to obtain Cu2O. Soda-lime glass substrates of 600 × 400 mm were used. About 50% of the infrared is blocked by the Cu2O window, when it is applied for thermal comfort. Thus, it was necessary to add another layer (CuS), which allowed a reduction of up to 20% in the NIR. The spectral behavior of the Cu + Cu2O window showed a transmittance of about 50% in VIS range, while in the NIR, the transmittance decreased from 40% to 20%. The composite windows, which contained CuS, Cu, and Cu2O are suitable solutions for solar control. Simulations of annual energy savings were carried out with the Energy-10 software for the Cu2O + CuS window for two cities, Mexico City and Mexicali, the latter representing extreme weather conditions (over 35 °C in summer and below 6 °C in winter). The total energy saving was approximately 20% of the total energy demand for Mexicali. Thermal transmission measurements were also carried out at the center of these windows, giving values of about 4 W/m2 K.  相似文献   

18.
A set of correlations for computing the glass-cover temperatures of flat-plate solar collectors with double glazing is developed. A semi-analytical correlation for the factor f2—the ratio of outer to inner thermal resistance of a double-glazed collector—as a function of collector parameters and atmospheric variables is obtained by regression analysis. This relation readily provides the temperature of the second (outer) glass cover (T2). For estimating the temperature of first (inner) glass cover (T1), another relation for the factor f1—the ratio of thermal resistance between the two glass covers to the thermal resistance between the absorber plate and first glass cover—is developed. A wide range of variables is covered in the present analysis. The results are compared with those obtained by numerical solutions of heat-balance equations. Using the proposed relations of glass-cover temperatures, the values of top heat loss coefficient (Ut) can be computed and are found to be very close to those obtained by numerical solutions of heat-balance equations. The maximum absolute error in the calculation of Ut by the proposed method is only 1.0%, so numerical solutions of heat-balance equations for the computation of Ut are not required.  相似文献   

19.
Silica aerogel granulate material for thermal insulation and daylighting   总被引:9,自引:0,他引:9  
Silica aerogel granulate is a nanostructured material with high solar transmittance and low thermal conductivity. These properties offer exciting applications in building envelopes. One objective of the joint R&D project ISOTEG at ZAE Bayern was to develop and characterize a new glazing element based on granular silica aerogel. Heat transfer coefficients of less than 0.4 W/(m2 K) and a total solar energy transmittance of 35% for the whole glazing unit were achieved. The glazing has a thickness of less than 50 mm. Another application for granular silica aerogel is, for example, in solar collectors.The thermal properties of the glazing as well as the optical and thermal properties of the granular aerogels are presented here. The solar transmittance of a 10 mm packed bed of silica aerogel was 53% for semi-translucent spheres and 88% for highly translucent granulate. In our heat transfer experiments the gas pressure, external pressure load, temperature and gas filling were varied. The various thermal conductivity values measured for the glazing and collector applications were compared to the values calculated using two different packed bed models. For the gas-dependent measurements the intergranular voids in the granulate were 1.0 ± 0.1 mm before loading the packed bed, 0.3 ± 0.1 mm at an external load of 3.2 bar (3.2 × 105 Pa) and 0.6 ± 0.1 mm after release.A direct radiative conduction of λdirect = 4.5 ± 0.5 × 10−3 W m−1 K−1 was obtained.  相似文献   

20.
On minimizing heat transport in architectural glazing   总被引:2,自引:0,他引:2  
Heinrich Manz   《Renewable Energy》2008,33(1):119-128
Significant reductions in the heating energy demand of buildings are achievable through minimization of the thermal transmittance of glazing. This paper reviews all the heat transport processes occurring in gas-filled and evacuated insulating glazing. The heat transfer mechanisms in gas-filled glazing cavities include radiative exchange between the glass sheet surfaces, convection and gaseous conduction. The application of two low-emissivity coatings (0.04) lowers the thermal conductance due to radiation between the glass pane surfaces to roughly 0.1 W m−2 K−1. At the same time, even where fill gases such as krypton and xenon are used, thermal conductance due to convection and conduction cannot be reduced to much below 1 W m−2 K−1. Heat transfer by convection and gaseous conduction only becomes negligible where the cavity is evacuated to approximately 10−2 Pa. Heat transfer is then determined by radiation and, even more importantly, conduction in support pillars required to bear the atmospheric load on the external glass sheet surfaces. The fact that the average centre-of-glazing heat transfer rates achievable by evacuation of the cavity are some two to five times lower than those of gas-filled cavities increases the significance of heat transfer in the glazing edge regions. Consequently, in addition to the heat transfer in the cavity, the impact on glazing thermal transmittance of the edge seal and different frame constructions was also quantified. The possibilities and limitations of reducing total heat transfer in evacuated glazing are discussed on the basis of analytical and numerical methods. The results suggest that this concept offers significant advantages over current glazing technology in terms of overall thermal transmittance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号