首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Freeze–thaw cycling is a weathering process that frequently occurs in cold climates. In the freeze state, thermodynamic conditions at temperatures just below 0 °C result in the translocation of water and ice. Consequently, the engineering properties of soils such as permeability, water content, stress–strain behavior, failure strength, elastic modulus, cohesion, and friction angle may be changed. Former studies have been focused on changes in physical and mechanical properties of soil due to freeze–thaw cycles. In this paper, the effect of freeze–thaw cycles on the compressive strength of fiber-reinforced clay is investigated. For this purpose, kaolinite clay reinforced by steel and polypropylene fibers is compacted in a laboratory and exposed to a maximum of 10 closed-system freezing and thawing cycles. The unconfined compressive strength of reinforced and unreinforced specimens is then determined. The results of the study show that for the soil investigated, the increase in the number of freeze–thaw cycles results in the decrease of unconfined compressive strength of clay samples by 20–25%. Moreover, inclusion of fiber in clay samples increases the unconfined compressive strength of soil and decreases the frost heave. Furthermore, the results of the study indicate that fiber addition does not decrease the soil strength against freeze–thaw cycles. Moreover, the study shows that the addition of 3% polypropylene fibers results in the increase of unconfined compressive strength of the soil before and after applying freeze–thaw cycles by 60% to 160% and decrease of frost heave by 70%.  相似文献   

2.
Alternative landfill covers utilizing evapotranspiration (ET) as the primary mechanism for protecting the waste layer from aerial moisture represent promising tools for cold region solid waste management. However, ET covers have not been evaluated for use in subarctic climates. As the functionality of an ET cover is driven primarily by climactic variables, climate-specific field tests are required prior to widespread implementation. The objective of this study was to evaluate the four-year performance of two competing pilot-scale landfill covers built atop drainage lysimeters near Anchorage, AK. The compacted soil cover (CSC) was designed and constructed according to standards prescribed by Alaska solid waste regulations. The alternative ET cover design was based upon a preliminary modeling study. After four years, the two adjacent lysimeters had each received a total of 1636 mm precipitation. Over that period, 201 mm moisture drained from the ET lysimeter, compared to 292 mm in the CSC lysimeter. The difference in drainage rates between the two covers was most apparent during the autumn season, when the drainage rates for both covers were at their annual maximum. The lower autumn and annual drainage rates observed in the ET lysimeter after the first year were potentially due to higher moisture storage capacity in the ET cover soils and/or formation of preferential flow paths in the CSC soils. Analysis of soil temperature, precipitation, and drainage data indicated that negligible amounts of winter precipitation infiltrated the ET cover during winter, and that the frozen soils promoted runoff over drainage during the spring melt. These results indicate that similar ET cover designs merit consideration for broader use in subarctic conditions.  相似文献   

3.
Mechanical properties of fine grained soils, which are subjected to freeze–thaw condition, often change considerably, so when these soils are used as a part of a structure or as an infrastructure, determining a proper solution is necessary. In this paper, stabilization and fiber reinforcement are simultaneously examined as a soil modification method. A series of unconfined compression tests was carried out to investigate the effects of tire cord waste products on mechanical characteristics of a lime stabilized and unstabilized clayey soil subjected to freezing and thawing cycles. Several specimens were prepared at three percentages of lime (i.e. 0%, 4%, and 8%) and four percentages of discrete short nylon fiber (i.e. 0%, 0.5%, 1%, and 1.5%) by weight of dry soil. The samples were saturated and exposed to one up to three freeze–thaw cycles before testing. The results indicated that the compressive strength and stress–strain behavior of specimens depend considerably on the amounts of both fiber and lime. For stabilized specimens, the reinforcement effect of fiber was more than unstabilized ones and also, by inclusion of fiber, 4% lime stabilized specimens indicated more strength in comparison to the untreated and 8% lime stabilized specimens. Furthermore, the contribution of fiber in the strength of samples increased as the number of freeze–thaw cycles was increased.  相似文献   

4.
The addition of silica fume in concrete causes a remarkable increase in strength and a drastic reduction in chloride ion permeability. These effects may be due primarily to microstructural changes both in the cement paste phase and in the interfacial zone around aggregates. The standard method of test for rapid determination of the chloride permeability of concrete, AASHTO T 277–831, has increasingly been used to evaluate the permeability of concrete. However, for the concrete containing silica fume, the results of the AASHTO T 277–831 test, which is expressed in terms of electrical charge passed, do not necessarily reflect the real diffusion index of chloride ion through the concrete. There seems to be factors other than the pore structure which govern the results of the AASHTO T 277–831 test in the concrete containing silica fume. In this study, the effects of silica fume to reduce the chloride ion permeability of the mortar were investigated based on the results of pore size distribution measurements, X-ray diffraction analysis, SEM observations and pore solution extraction. The application of the AASHTO T 277–831 test to the evaluation of the chloride ion permeability of the concrete containing silica fume was discussed.  相似文献   

5.
This work aims to reveal the effects of silica fume on properties of fly ash based geopolymer under thermal cycles. Geopolymer specimens were prepared by alkali activation of fly ash, which was partially replaced by silica fume at levels ranging from 0% to 30% with an interval of 10%, by mass. Microstructure, residual strength and mass loss of fly ash based geopolymer blended with silica fume before and after exposed to 7, 28 and 56 heat-cooling thermal cycles at different target temperatures of 200 °C, 400 °C and 800 °C were assessed and compared. The experimental results reveal that silica fume addition enhances strength development in geopolymer. Under thermal cycles, the compressive strength of geopolymer decreases, and the compressive strength loss, as well as the mass loss, increases with increasing target temperature. The strength loss is the same regardless of silica fume content after thermal cycles. Microstructure analysis uncovers that pore structure of geopolymer degrades after thermal cycles. The pores of geopolymer are refined by the addition of silica fume. The incorporation of silica fume optimizes the microstructure and improves the thermal resistance of geopolymer. Silica fume increases the strength of the geopolymer and even though the strength loss is the same, the strength after heat cycle exposure is still good.  相似文献   

6.
The effects of freezing and thawing cycling on the chloride permeability of normal weight and lightweight concretes were investigated by using the AASHTO T277 chloride permeability test method and the freeze-thaw test method similar to that recommended by ASTM C666. The results showed that the chloride permeability of the normal weight concretes having an air content of at least 5·3% changed little with the repeated cycles of freezing and thawing up to 618 cycles, irrespective of the presence and the type of mineral admixtures. It was also found that lightweight concretes made with fully-saturated expanded shale aggregates exhibited an extremely high chloride permeability at any air content, when they were subjected to a single freeze-thaw cycle. Furthermore, the type of microcracks developing in normal weight concretes exposed to the repeated freeze-thaw cycles was discussed.  相似文献   

7.
Twelve mixtures were prepared to investigate the influence of drying on the scaling resistance of concrete to freezing and thawing cycles in the presence of deicer salts. Six mixtures were made with an ordinary Portland cement (Canadian type 10), and six with a silica fume blended cement. The other parameters of this series of tests were the water/binder ratio (0.25, 0.35, and 0.45), the characteristics of the air void system (an air-entrained and a non-air-entrained and a non-air-entrained mixture were made with each combination of type of cement and water/binder ratio), and the drying temperature before the salt scaling tests (20°C, 40°C, and 105°C). The deicer salt scaling resistance was determined using the ASTM C 672 standard test. Test results indicate that drying at 40°C and 105°C can considerably reduce the deicer salt scaling resistance of concrete. Test data also show that the use of silica fume and the reduction of the water/binder ratio both significantly reduce the negative influence of drying. In addition, test results indicate that air entrainment is no longer required to obtain a satisfactory scaling resistance when the water/binder ratio is equal to 0.25, irrespective of the type of binder or the drying temperature.  相似文献   

8.
Landfill is an important anthropogenic source of odorous gases. In this work, the adsorption characteristics of H(2)S on waste biocover soil, an alternative landfill cover, were investigated. The results showed that the adsorption capacity of H(2)S increased with the reduction of particle size, the increase of pH value and water content of waste biocover soil. The optimal composition of waste biocover soil, in regard to operation cost and H(2)S removal performance, was original pH value, water content of 40% (w/w) and particle size of ≤4 mm. A net increase was observed in the adsorption capacity of H(2)S with temperatures in the range of 4-35°C. The adsorption capacity of H(2)S on waste biocover soil with optimal composition reached the maximum value of 60±1 mg/kg at oxygen concentration of 10% (v/v). When H(2)S concentration was about 5% (v/v), the adsorption capacity was near saturation, maintaining at 383±40 mg/kg. Among the four experimental soils, the highest adsorption capacity of H(2)S was observed on waste biocover soil, followed by landfill cover soil, mulberry soil, and sand soil, which was only 9.8% of that of waste biocover soil.  相似文献   

9.
While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of “calcite or carbonate” (CaCO3) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.  相似文献   

10.
High strength concrete containing natural pozzolan and silica fume   总被引:9,自引:0,他引:9  
Various combinations of a local natural pozzolan and silica fume were used to produce workable high to very high strength mortars and concretes with a compressive strength in the range of 69–110 MPa. The mixtures were tested for workability, density, compressive strength, splitting tensile strength, and modulus of elasticity. The results of this study suggest that certain natural pozzolan–silica fume combinations can improve the compressive and splitting tensile strengths, workability, and elastic modulus of concretes, more than natural pozzolan and silica fume alone. Furthermore, the use of silica fume at 15% of the weight of cement was able to produce relatively the highest strength increase in the presence of about 15% pozzolan than without pozzolan. This study recommends the use of natural pozzolan in combination with silica fume in the production of high strength concrete, and for providing technical and economical advantages in specific local uses in the concrete industry.  相似文献   

11.
The equipment configuration of a landfill gas (LFG) fueled biogas engine driven air source heat pump system was studied. The process flow for collecting and purifying LFG was analyzed, and the LFG collection and purification method was determined. An experimental apparatus was set up, and the effect of biogas engine speed variation on LFG consumption, exhaust fume temperature of biogas engine, recovered waste heat from exhaust fume and cylinder liner, coefficient of performance (COP) of the heat pump and primary energy ratio (PER) of the system were experimentally tested. The results indicated that LFG consumption and biogas engine exhaust fume temperature increased with biogas engine speed. When the biogas engine operated in the 70%–90% rated speed range, the system heat output and exhaust fume waste heat recovery rate would be relatively higher. In addition, the maximum COP and PER reached 4.2 and 1.4 respectively.  相似文献   

12.
The Dynamic Cone Penetrometer (DCP) is a device that is used in the construction industry for the assessment of in situ soil compaction quality. Over the past few decades, numerous correlations have been developed between the DCP test results and soil strength and stiffness parameters. This paper proposes a comprehensive set of criteria and recommendations for quality control (QC) of compacted subgrade that take into account the inherent statistical variability of DCP test results. For the development of the QC criteria, a new statistical methodology is used to extract representative test values from the raw field DCP test data. In order to use the proposed QC criteria, soils are first classified into two broad categories (fine-grained and coarse-grained) depending on their fabric and response to compaction efforts. Test results indicate that (i) for fine-grained soils, the DCP test values have good correlation with the plasticity index (PI), which is indicative of the type and amount of clay content of the soil and (ii) for coarse-grained soils, the DCP test values have good correlation with the optimum water content of the soil, which is directly related to its in situ density. DCP blow count correlation equations are presented for both soil categories. Recommendations for field DCP testing and data analysis are also provided to highlight the significance of the statistical distribution of the DCP test results in QC testing of compacted subgrade.  相似文献   

13.
Natural zeolite, a type of frame-structured hydrated aluminosilicate mineral, is used abundantly as a type of natural pozzolanic material in some regions of the world. In this work, the effectiveness of a locally quarried zeolite in enhancing mechanical and durability properties of concrete is evaluated and is also compared with other pozzolanic admixtures. The experimental tests included three parts: In the first part, the pozzolanic reactivity of natural zeolite and silica fume were examined by a thermogravimetric method. In this case, the results indicated that natural zeolite was not as reactive as silica fume but it showed a good pozzolanic reactivity. In the second part, zeolite and silica fume were substituted for cement in different proportions in concrete mixtures, and several physical and durability tests of concrete were performed. These experimental tests included slump, compressive strength, water absorption, oxygen permeability, chloride diffusion, and electrical resistivity of concrete. Based on these results, the performance of concretes containing different contents of zeolite improved and even were comparable to or better than that of concretes prepared with silica fume replacements in some cases. Finally, a comparative study on effect of zeolite and fly ash on limiting ASR expansion of mortar was performed according to ASTM C 1260 and ASTM C 1567. Expansion tests on mortar prisms showed that zeolite is as effective as fly ash to prevent deleterious expansion due to ASR.  相似文献   

14.
The primary concern for vegetable fibre reinforced mortar composites (VFRMC) is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength and toughness as a result of weakening of the fibres by a combination of alkali attack and mineralisation through the migration of hydration products to lumens and spaces. This paper presents several approaches used to improve the durability performance of VFRMCs incorporating sisal and coconut fibres. These include carbonation of the matrix in a CO2-rich environment; the immersion of fibres in slurried silica fume prior to incorporation in the ordinary Portland cement (OPC) matrix; partial replacement of OPC matrix by undensified silica fume or blast-furnace slag and a combination of fibre immersion in slurried silica fume and cement replacement. The durability of the modified VFRMC was studied by determining the effects of ageing in water, exposure to cycles of wetting and drying and open air weathering on the microstructures and flexural behaviour of the composites. Immersion of natural fibres in a silica fume slurry before their addition to cement-based composites was found to be an effective means of reducing embrittlement of the composite in the environments studied. Early cure of composites in a CO2-rich environment and the partial replacement of OPC by undensified silica fume were also efficient approaches in obtaining a composite of improved durability. The use of slag as a partial cement replacement had no effect on reducing the embrittlement of the composite.  相似文献   

15.
张广泰  田虎学  李宝元  张继飞  王玉喜 《材料导报》2018,32(14):2396-2399, 2406
研究了盐冻循环作用对锂渣混凝土(LiC)和钢-聚丙烯混杂纤维锂渣混凝土(HFC)的质量损失、抗压强度、动弹性模量、基振频率以及溶液吸入量的影响。结果表明:随盐冻循环次数的增加,LiC和HFC均呈现质量损失率逐渐增大、抗压强度先增加后减小、动弹性模量前期稳定后期逐渐减小、溶液吸入量(Ws)先减小后增加的变化规律。将二者对比可以发现,钢-聚丙烯混杂纤维掺入混凝土可以减小盐冻作用对混凝土的内部损伤,显著提高混凝土的抗盐冻性能。  相似文献   

16.
Review: Improving cement-based materials by using silica fume   总被引:2,自引:0,他引:2  
The effects of silica fume as an admixture in cement-based materials are reviewed in terms of the mechanical properties, vibration damping capacity, freeze-thaw durability, abrasion resistance, shrinkage, air void content, density, permeability, steel rebar corrosion resistance, alkali-silica reactivity reduction, chemical attack resistance, bond strength to steel rebar, creep rate, coefficient of thermal expansion, specific heat, thermal conductivity, fiber dispersion, defect dynamics, dielectric constant and workability. The effects of silane treatment of the silica fume and of the use of silane as an additional admixture are also addressed.  相似文献   

17.
双轴压混凝土在冻融循环后的力学性能及其破坏准则   总被引:6,自引:0,他引:6  
采用快速冻融方法,对普通混凝土进行0、25、50、75次冻融循环,并利用大连理工大学海岸和近海工程国家重点实验室的大型混凝土静、动三轴试验系统,进行了5种比例加载路径的双轴压试验,测得了混凝土的强度,应力-应变关系曲线。用电子显微镜检验了混凝土承受不同冻融循环后的微观结构。根据试验结果,系统地探讨了冻融循环后,混凝土在不同比例加载下的双轴受压强度和变形等力学性能,在此基础上,建立了以应力空间表示的冻融循环后混凝土双轴压的破坏准则。它为北方寒冷地区的混凝土结构,如水坝、混凝土路面等处于双轴压组合荷载作用下混凝土结构的设计、分析提供了理论依据。  相似文献   

18.
Metakaolin (MK) is a valuable admixture for concrete/cement applications that can enhance the performance of cementitious composites through high pozzolanic reactivity, much like silica fume (SF). While SF concrete is characterized by superior mechanical and durability performance, concrete containing MK achieves comparable properties at a lower price and with better workability. The objective of this study is to investigate the effect of cement replacement by MK on the durability of self-consolidating concrete (SCC); the effect of SF at similar levels of MK replacement has also been included for comparison. The durability performance of SCC was evaluated based on the results of drying shrinkage, freezing and thawing, salt scaling, and rapid chloride permeability tests. The results of these tests indicate that highly durable SCC mixtures can be produced using a high MK content with an optimum percentage of around 20%. The results also show that the durability of SCC, especially with high MK content, is higher than that of SCC containing SF.  相似文献   

19.
In this study, the physical and mechanical behaviors of geopolymers prepared by using different amounts of silica fume and calcium hydroxide as binding materials, acidic pumice as fine aggregate and waste aluminium particles as air-entraining agent were investigated. Test results showed that binder types, amount of binders and alkali activator (sodium hydroxide) significantly affected the physical and mechanical behavior of geopolymer specimens. Bulk density, compressive and flexural strength decreased with the higher alkali activator content. Addition of waste aluminium particles led to decrease in bulk density and strength due to the some extent of entrained air. In the case of same alkali activator content, compressive and flexural strength increased with increase in silica fume and calcium hydroxide up to a certain level.  相似文献   

20.
通过开展在不同龄期、不同环境湿度下玻璃纤维增强水泥(GRC)试件的抗折强度、抗压强度试验和基体pH值测定,研究了环境湿度对掺加粉煤灰和硅灰等活性矿物掺合料的GRC试件力学性能的影响。结果表明:环境湿度对GRC试件的抗折强度有重要影响,相对湿度越大,随着龄期增加, GRC试件抗折强度降低越严重;在温度60℃、相对湿度95%条件下,经过56 d龄期后,掺有40%粉煤灰和10%硅灰的GRC试件抗折强度比未掺加粉煤灰和硅灰的GRC试件的抗折强度提高48.5%、抗压强度提高23.6%, GRC基体pH值降低6%。在相同的湿度条件下,掺有粉煤灰和硅灰试件的pH值在各个龄期都低于普通硅酸盐水泥试件,说明粉煤灰和硅灰的掺入能降低水泥水化液相的碱度,进而延缓了纤维受侵蚀的速度,显著改善了GRC试件的力学及耐久性能。通过对试验结果进行分析,利用MATLAB软件建立了GRC试件抗折强度和抗压强度与水泥砂浆基体pH值及时间的关系式。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号