首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombospondin (TSP) is a multifunctional extracellular matrix protein that plays a role in neuronal migration and axonal outgrowth in the developing central nervous system. In the current study we have examined the localization and regulation of TSP immunoreactivity (TSP-IR) during neuronal regeneration in the axotomized facial motor nucleus using Western blotting and light and electron microscopy. Transection of the facial nerve led to a gradual increase in TSP-IR in the regenerating motoneurons, peaking 4-7 days after injury (DAI). In addition to regenerating neurons, axotomy also caused a rapid upregulation of TSP-IR on activated microglia throughout the facial nucleus, with a maximum of 2-3 DAI, and a second increase at 14-21 DAI on microglial aggregates surrounding degenerating motoneurons and in neuronophagic microglia. In summary, injury leads to the induction of thrombospondin on axotomized neurons and activated microglia, peaking at the times of maximal posttraumatic microglial proliferation and during neuronal phagocytosis. Since thrombospondin is a multimodal extracellular matrix protein with a variety of cell attachment sites, thrombospondin might serve to link microglia and injured neurons, followed by microglial proliferation and removal of the neuronal debris.  相似文献   

2.
Motoneuron cell death was analysed in the rat facial motor nucleus after neonatal facial nerve transection. In situ DNA fragmentation labelling showed that axotomized motoneurons die by an apoptotic mechanism. In order to investigate the existence of excitotoxic mechanisms in this type of neuronal death, rats were treated with several agents known to possess neuroprotective action through a variety of mechanisms. The Na+ channel inhibitor lamotrigine and the antagonist for the N-methyl-D-aspartate-type glutamate receptor, dizocilpine maleate (MK-801) were found to be able to rescue motoneurons from cell death induced by axotomy. The nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester was also able to protect motoneurons from death, but to a lesser extent. The distribution of constitutive and inducible isoforms of nitric oxide synthase was investigated by immunocytochemistry in the facial motor nucleus. No changes were detected in constitutive nitric oxide synthase immunoreactivity in the facial motor nucleus after axotomy. However, in the axotomized facial motor nucleus, inducible nitric oxide synthase showed a positive immunolabelling specifically located in activated astrocytes, but not in microglia. Nitric oxide derived from activated astrocytes may have a role in promoting excitotoxic mechanisms in axotomized motoneurons. We conclude that excitotoxic mechanisms involving apoptotic cell death are present when immature motoneurons die as a consequence of target disconnection.  相似文献   

3.
Microglial activation in response to pathological stimuli is characterized by increased migratory activity and potential cytotoxic action on injured neurons during later stages of neurodegeneration. The initial molecular changes in the CNS favoring neuronofugal migration of microglia remain, however, largely unknown. We report that the extracellular matrix protein tenascin-R (TN-R) present in the intact CNS is antiadhesive for activated microglia, and its downregulation after facial nerve axotomy may account for the loss of motoneuron protection and subsequent neurodegeneration. Studies on the protein expression in the facial and hypoglossal nucleus in rats demonstrate that TN-R is a constituent of the perineuronal net of motoneurons and 7 d after peripheral nerve injury becomes downregulated in the corresponding motor nucleus. This downregulation is reversible under regenerative (nerve suture) conditions and irreversible under degenerative (nerve resection) conditions. In short-term adhesion assays, the unlesioned side of brainstem cryosections from unilaterally operated animals is nonpermissive for activated microglia, and this nonpermissiveness is almost abolished by a monoclonal antibody to TN-R. Microglia-conditioned media and tumor necrosis factor-alpha downregulate TN-R protein and mRNA synthesis by cultured oligodendrocytes, which are one of the sources for TN-R in the brainstem. Our findings suggest a new role for TN-R in neuronal protection against activated microglia and the participation of the latter in perineuronal net destruction, e.g., downregulation of TN-R.  相似文献   

4.
We have examined the glial cell response, the possible expression of compounds associated with the complement cascade, including the putative complement inhibitor clusterin, and their cellular association during Wallerian degeneration in the central nervous system. Examination of the proliferation pattern revealed an overall greater mitotic activity after rhizotomy, an exclusive involvement of microglia in this proliferation after peripheral nerve injury, but, in addition, a small fraction of proliferating astrocytes after rhizotomy. Immunostaining with the phagocytic cell marker ED1 gradually became very prominent after rhizotomy, possibly reflecting a response to the extensive nerve fiber disintegration. Lumbar dorsal rhizotomy did not induce endogenous immunoglobulin G (IgG) deposition or complement expression in the spinal cord dorsal horn, dorsal funiculus, or gracile nucleus. This is in marked contrast to the situation after peripheral nerve injury, which appears to activate the entire complement cascade in the vicinity of the central sensory processes. Clusterin, a multifunctional protein with complement inhibitory effects, was markedly upregulated in the dorsal funiculus in astrocytes. In addition, there was an intense induction of clusterin expression in the degenerating white matter in oligodendrocytes, possibly reflecting a degeneration process in these cells. The findings suggest that 1) complement expression by microglial cells is intimately associated with IgG deposition; 2) axotomized neuronal perikarya, but not degenerating central fibers, undergo changes which induce such deposition; and 3) clusterin is not related to complement expression following neuronal injury but participates in regulating the state of oligodendrocytes during Wallerian degeneration.  相似文献   

5.
6.
Here we report on the rapid changes in the motor cortex of the rat following peripheral lesioning of a motor nerve. Facial nerve transection increases synaptic reorganization (autophagy, lysosomal degradation of synaptic components) already within 4 h after lesion. These changes occur in the motor cortex of both hemispheres, i.e. on the same and contralateral sides. An increase in the number of presynaptic lysosomes was transient and returned to below normal values within 24 h after facial nerve transection.  相似文献   

7.
Treatment with testosterone propionate (TP) after nerve injury is known to accelerate both the rate of axonal regeneration and functional recovery from facial paralysis in the adult male hamster. Peripheral nerve injury is also known to increase the expression of a 43 kilodalton growth-associated protein (GAP-43). In the intact brain, GAP-43 expression is affected by gonadal steroids. We thus postulated that steroidal modulation of GAP-43 gene expression may be a component of the neurotrophic action of TP in regenerating neurons. This issue was examined in hamster facial motor neurons (FMN) which contain androgen receptors and which have been shown to respond to exogenous steroids in a number of previous studies. Castrated adult male hamsters were subjected to right facial nerve transection and treated with either TP via subcutaneous hormone capsule implants, or left untreated (no hormone replacement). At post-injury/treatment times of 0.25, 2, 4, 7, and 14 d, the brain stem regions were harvested, cryostat sections were collected through the facial motor nucleus, and in situ hybridization was done using a 33P-labeled GAP-43 cDNA probe. Quantitative analysis of the autoradiograms by computer assisted grain counting revealed that axotomy produced a dramatic increase in GAP-43 mRNA levels in FMN by 2 d post-axotomy and that this increase remained through 14 d post-injury in both the TP-treated and the untreated group. In the nonhormone-treated group, there was a statistically significant dip in GAP-43 mRNA levels in FMN at 7 d post-operative, relative to 4 d post-operative levels. TP-treatment prevented this transient decline in GAP-43 mRNA levels in axotomized FMN.  相似文献   

8.
Intracranial transection of the facial nerve has been shown to cause a massive neuronal cell death in the motor facial nucleus. Complement activation has been proposed to contribute to neuronal degeneration following axotomy. Using immunocytochemistry and in situ hybridization we show in the present study that there is complement activation in the facial nucleus after intracranial facial nerve transection as well as increase of the complement regulators CD59 and clusterin. We propose a neuroprotective role for the complement regulators CD59 and clusterin against homologous attack of complement to facial motor neurons.  相似文献   

9.
Brain injury induces reactive gliosis, characterized by increased expression of glial fibrillary acidic protein (GFAP), astrocyte hypertrophy, and hyperplasia of astrocytes and microglia. One hypothesis tested in this study was whether ganglioside GD3+ glial precursor cells would contribute to macroglial proliferation following injury. Adult rats received a cortical stab wound. Proliferating cells were identified by immunostaining for proliferating cell nuclear antigen (PCNA) and by [3H]-thymidine autoradiography, and cell phenotypes by immunocytochemical staining for GD3, GFAP, ED1 (for reactive microglia) and for Bandeiraea Simplicifolia isolectin-B4 binding (all microglia). Animals were labeled with thymidine at 1,2,3, and 4 days postlesion (dpl) and sacrificed at various times thereafter. Proliferating cells of each phenotype were quantified. A dramatic upregulation of GD3 on ramified microglia was seen in the ipsilateral hemisphere by 2 dpl. Proliferating cells consisted of microglia and fewer astrocytes. Microglia proliferated maximally at 2-3 dpl and one third to one half were GD3+. Astrocytes proliferated maximally at 3-4 dpl, and some were also GD3+. Both ramified and ameboid forms of microglia proliferated and by 4 dpl all GD3+ microglia were ED1+ and vice versa. In the contralateral cortex microglia expressed neither GD3 nor ED1. Thus they acquired these antigens when activated. Neither microglia nor astrocytes that were thymidine-labeled at 2, 3, or 4 dpl changed in number in subsequent days. Most thymidine+ astrocytes were large GFAP+ reactive cells that clearly arose from pre-existing astrocytes, not from GD3+ glial precursors. In this model of injury microglia proliferate earlier and to a much greater extent than astrocytes, they can divide when in ramified form, and GD3 is up-regulated in most reactive microglia and in a subset of reactive astrocytes. We also conclude that microglial proliferation precedes proliferation of invading blood-borne macrophages.  相似文献   

10.
Peripheral-type benzodiazepine (BZ) receptors (PBRs) have been identified in various peripheral tissues as well as in glial cells in in the brain. PBRs are located mainly on the outer mitochondrial membrane and bind with high affinity the BZ Ro 5-4864 (4'-cholorodiazepam) and the non-BZ PK 11195 (an isoquinoline carboxamide derivative), but bind with very low affinity the BZ clonazepam. PBRs have been cloned from various species. PBRs are multimeric receptors composed of the 18-kDa binding site for isoquinolines, the 32-kDa voltage-dependent anion channel, and the 30-kDa adenine nucleotide carrier (which binds BZs). The expression of PBRs is especially high in steroidogenic organs. Steroid administration affects PBR density, whereas depletion of hormones by hypophysectomy in female rats, or castration (surgical or chemical) in male rats, decreases PBR density in endocrine organs, which can be elevated to normal values after administration of the appropriate hormone. PBRs are probably involved in several functions, including cell proliferation, respiration, and steroidogenesis. It has been suggested that PBRs are involved in the translocation of cholesterol from the outer to the inner membrane of the mitochondria and have an effect on the biosynthesis of steroids.  相似文献   

11.
12.
The competence of neurons to regenerate depends on their ability to initiate a program of gene expression supporting growth and on the growth-permissive properties of glial cells in the distal stump of the injured nerve. Most studies on intrinsic molecular mechanisms governing peripheral nerve regeneration have focussed on the lesion-induced expression of proteins promoting growth cone motility, neurite extension, and adhesion. However, little is known about the expression of intrinsic chemorepulsive proteins and their receptors, after peripheral nerve injury and during nerve regeneration. Here we report the effect of peripheral nerve injury on the expression of the genes encoding sema III/coll-1 and its receptor neuropilin-1, which are known to be expressed in adult sensory and/or motor neurons. We have shown that peripheral nerve crush or transection results in a decline in sema III/coll-1 mRNA expression in injured spinal and facial motor neurons. This decline was paralleled by an induction in the expression of the growth-associated protein B-50/GAP-43. As sema III/coll-1 returned to normal levels following nerve crush, B-50/GAP-43 returned to precrush levels. Thus, the decline in sema III/coll-1 mRNA coincided with sensory and motor neuron regeneration. A sustained decline in sema III/coll-1 mRNA expression was found when regeneration was blocked by nerve transection and ligation. No changes were observed in neuropilin-1 mRNA levels after injury to sensory and motor neurons, suggesting that regenerating peripheral neurons continue to be sensitive to sema III/coll-1. Therefore we propose that a decreased expression of sema III/coll-1, one of the major ligands for neuropilin-1, during peripheral nerve regeneration is an important molecular event that is part of the adaptive response related to the success of regenerative neurite outgrowth occurring following peripheral nerve injury.  相似文献   

13.
Microglial proliferation and activation are common events in the injured CNS. The mechanisms, however, by which activated microglia are eliminated following a pathological stimulus are still poorly understood. The present study has therefore examined microglial proliferation by 3H-thymidine autoradiography and programmed cell death by terminal transferase-mediated nick end labeling (TUNEL) and in situ end labeling (ISEL) of nuclear DNA fragments in two models of peripheral nerve injury, i.e. sciatic and hypoglossal nerve transection in the rat. In these models, microglial activation and proliferation occur in CNS projection areas, i.e. in the ventral and dorsal gray matter of lumbar spinal cord and in the nucleus gracilis after sciatic nerve transection as well as in the axotomized hypoglossal nucleus. At these sites, microglial proliferation had a relatively sharp peak between days 2 and 3 post-lesion and then rapidly declined. DNA fragmentation was detected in lectin (GSI-B4)-positive microglia from day 6 after axotomy onward, reached an apparent peak at day 21 and was downregulated by day 60, i.e. the latest time point investigated. However, the expression of bcl-2 and c-myc, i.e. genes potentially controlling programmed cell death, was found to be unchanged during this period. Programmed cell death thus appears to be one mechanism by which activated microglia are gradually eliminated following CNS injury and steady state of microglial cell numbers is achieved in vivo. Expression of microglial growth factors may be instrumental in controlling these processes.  相似文献   

14.
A recently identified chemokine, fractalkine, is a member of the chemokine gene family, which consists principally of secreted, proinflammatory molecules. Fractalkine is distinguished structurally by the presence of a CX3C motif as well as transmembrane spanning and mucin-like domains and shows atypical constitutive expression in a number of nonhematopoietic tissues, including brain. We undertook an extensive characterization of this chemokine and its receptor CX3CR1 in the brain to gain insights into use of chemokine-dependent systems in the central nervous system. Expression of fractalkine in rat brain was found to be widespread and localized principally to neurons. Recombinant rat CX3CR1, as expressed in Chinese hamster ovary cells, specifically bound fractalkine and signaled in the presence of either membrane-anchored or soluble forms of fractalkine protein. Fractalkine stimulated chemotaxis and elevated intracellular calcium levels of microglia; these responses were blocked by anti-CX3CR1 antibodies. After facial motor nerve axotomy, dramatic changes in the levels of CX3CR1 and fractalkine in the facial nucleus were evident. These included increases in the number and perineuronal location of CX3CR1-expressing microglia, decreased levels of motor neuron-expressed fractalkine mRNA, and an alteration in the forms of fractalkine protein expressed. These data describe mechanisms of cellular communication between neurons and microglia, involving fractalkine and CX3CR1, which occur in both normal and pathological states of the central nervous system.  相似文献   

15.
16.
Calcitonin gene-related peptide in sensory primary afferent neurons has an excitatory effect on postsynaptic neurons and potentiates the effect of substance P in the rat spinal dorsal horn. It has been established that calcitonin gene-related peptide expression in dorsal root ganglion neurons is depressed, and the effect of calcitonin gene-related peptide on dorsal horn neurons is attenuated, following peripheral nerve injury. We report here that a subpopulation of injured dorsal root ganglion neurons show increased expression of calcitonin gene-related peptide. Using in situ hybridization and the retrograde tracer, FluoroGold, we detected an increased number of medium- to large-sized rat dorsal root ganglion neurons projecting to the gracile nucleus that expressed alpha-calcitonin gene-related peptide messenger RNA following spinal nerve transection. Immunohistochemistry revealed a significant increase in calcitonin gene-related peptide immunoreactivity in the gracile nucleus and in laminae III-IV of the spinal dorsal horn. These results indicate that a subpopulation of dorsal root ganglion neurons express alpha-calcitonin gene-related peptide messenger RNA in response to peripheral nerve injury, and transport this peptide to the gracile nucleus and to laminae III-IV of the spinal dorsal horn. The increase of the excitatory neuropeptide, calcitonin gene-related peptide, in sites of primary afferent termination may affect the excitability of postsynaptic neurons, and have a role in neuronal plasticity following peripheral nerve injury.  相似文献   

17.
Osteopontin (OPN) is a secretory adhesive glycoprotein that is expressed in various tissues and plays a role in inflammation and tissue repair. It has been suggested that OPN plays a role in inflammation and wound healing after spinal cord injury; however, the expression of OPN and its function in the spinal cord under normal conditions and following spinal motoneuron injury have not been well characterized. Here we examined the expression of OPN mRNA before and after spinal root avulsion. OPN mRNA was detected at a low level in the normal spinal cord in a Northern blot analysis, but dramatically increased following avulsion. In situ hybridization and immunohistochemical studies demonstrated that OPN was present only in a subset of spinal motoneurons before avulsion. After avulsion, the number of OPN-expressing motoneurons increased, although the total number of motoneurons was reduced. OPN expression also became apparent in activated microglia/macrophages and astrocytes. These data suggest that the upregulation of OPN after spinal root avulsion is involved in two events, the protection of neurons and the post-traumatic inflammatory response in microglia/macrophages and astrocytes.  相似文献   

18.
19.
Injection of Fluoro-Gold (FG) into the whiskerpad muscles of rats yields a permanent retrograde labeling of motoneurons in the facial nucleus. Following subsequent resection of 10 mm of the facial nerve, one-third of the facial motoneurons die and the microglia phagocytize the dead FG-labeled neurons, take up FG, and get labeled in vivo. The resulting identification of all FG-labeled cells allows long-term comparative investigations on the behavior of neuronophages. In this study, we used two groups of rats to test whether the quantified expression of five immune-related antigens by neuronophages was related to quantified decline in neuron number (counts after immunostaining for neuron-specific enolase) 3 to 224 days after resection of the facial nerve. Rats of the first group received standard food and those of the second group, pellets containing 1,000 ppm of the calcium channel blocker nimodipine. Image analysis of the number of FG-containing cells and the number and projection area of immunopositive neuronophages in serial sections for each antigen showed that nimodipine significantly attenuated the immunostaining for CR3, MHC class I, and class II antigens (monoclonal antibodies [MAbs] OX-42, OX-18, and OX-6); enhanced the expression of monocyte-macrophage-specific antigen (MAb ED1); and did not change the expression of rat macrophage differentiation antigen (MAb ED2). The altered expressions, however, had no effect on the loss of motoneurons in the lesioned facial nucleus. We conclude that the degree of expression of immune-related antigens by neuronophages has no influence on the delayed neuronal cell death induced by permanent target deprivation.  相似文献   

20.
The regulatory effects of the proinflammatory cytokines, interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha) were investigated on CD4 and Mac-1 expression in mouse microglial cultures. The identity of the microglia in cultures was confirmed by multiple indices including morphology, uptake of acetylated low-density lipoprotein and lectin RCA 120 staining. Microglia growing on a monolayer of astrocytes (astrocyte-supported microglia) were both CD4- and Mac-1 positive (out of 94.5 % Mac-1-positive cells, 85.3% were also CD4 positive). When astrocyte-supported microglia were replated directly onto culture dishes (plate-supported microglia), the percentage of CD4- and Mac-1-positive cells decreased to 12-29 and 20-25% respectively. The addition of IL-1alpha or TNF-alpha to plate-supported microglia led to an upregulation of Mac-1 expression in a time- and dose-dependent manner with different EC50s (0.5 ng/ml for IL-1alpha and 2 ng/ml for TNF-alpha) but exhibited similar time-to-peak responses (over 12 h). The addition of IL-1alpha, but not TNF-alpha, also led to an increase in CD4 expression on plate-supported microglia with a similar dose response and time course. IL-1alpha treatment gave rise to an increase in the level of CD4 mRNA as assessed by RT-PCR. The possibility that cell proliferation was responsible for the observed effects on microglia was excluded by an analysis of 3H-thymidine incorporation. Our results suggest that cultured mouse microglia express CD4 molecules which can be upregulated by IL-1alpha while Mac-1 can be upregulated by both IL-1alpha and TNF-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号