首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Forming limits of nickel coating on right region   总被引:1,自引:0,他引:1  
The forming limits of nickel coating on the right region were studied, so as to direct the preparation of the material and help the production of workpieces. The electrodeposited nickel coating was prepared on steel substrate to form advanced structures, and its plastic instability was investigated by the Swift Plastic Instability Theory. By using the compound law for laminated sheet metals, explicit equations for the calculation of the instable eigen values were deduced. The forming limit diagrams of the nickel coating on the right region were plotted. It is exhibited that the forming limit of the coating sheet is between the forming limits of the individual nickel coating and steel substrate. The forming limit of the nickel coating is not so good as that of the steel substrate, and the forming limit strain of the coating sheet tends to diminish with the increase of thickness of the coating. The greater the normal anisotropic coefficient of the materials is, the better the forming limit is.  相似文献   

2.
Recent work on sheet metal formability had shown that the position of forming limit diagrams (FLDs) in punch stretching is higher than that in in-plane stretching because of a strain gradient effect resulting from bending a flat sheet into a curved sheet by punch stretching. To our knowledge, none of the developed theoretical models in the study of localized necking can be used to predict this phenomenon accurately so far. In this study, a new model, using Barlat and Lian’s new nonquadratic anisotropic yield criterion, is proposed by introducing a strain gradient term in the constitutive equation to consider the effect of the first order strain gradient (curvature), in the thickness direction resulting from bending, on the localized necking in anisotropic sheets. The developed model is used to study the effects of curvature on FLDs and to predict FLDs in punch stretching and inplane stretching for various materials. It is found that the theoretical predicted results are in good agreement with experimental data.  相似文献   

3.
For sheet metal forming, the determination of the onset of localized necking directly influences the formability evaluation and construction of forming limit curves (FLCs). Several necking criteria in the literature have been proposed and widely used, however, there are some restrictions, e.g., some criteria are suitable for numerical methods but not for the experimental phase. In this study, numerical and experimental procedures are carried out to seek an appropriate necking criterion for the prediction of FLCs. This article begins with the FE modeling of the Marciniak test with ABAQUS. Based on the FE simulation, different necking criteria (global and local ones) are reviewed and analyzed in detail, and the FLCs for a 5086 aluminum sheet are constructed with these criteria. On the other hand, a quasi-static experimental Marciniak test is carried out to study the formability for this given sheet. With a chosen necking criterion, the limit strains are experimentally determined. The comparison between experimental and numerical results shows that the chosen necking criterion could be effective to numerically and experimentally evaluate the global formability of this aluminum alloy on the wide range of strain states.  相似文献   

4.
不锈钢覆铝板成形极限的理论分析和实验验证   总被引:6,自引:0,他引:6  
在Hil的各向塑性异性条件下推导了不锈钢覆铝板成形极限的计算模型。在应变比为负(β<0)的区域,根据Hil的局部颈缩理论推导出了复合板的局部颈缩条件式;在应变比为正(β<0)的区域,先根据Swift理论推导出了复合板的扩散颈缩条件式并计算出出现扩散颈缩的应变,然后在此基础上根据修正M-K理论推导出了复合板的局部颈缩的极限应变计算式。计算结果与实验数据吻合较好,发现复合板的成形极限介于其母材之间,并随着其母材中成形性好的材料的厚比增大而提高。  相似文献   

5.
DEPENDENCEOFPREDICTIONMODELOFFORMINGLIMITSTRAINSONFORMINGMETHODANDMECHANICALPROPERTIESOFSHEETMETALS①ZhouWeixianDepartmentofAe...  相似文献   

6.
Formability of sheet metal is usually assessed by the useful concept of forming limit diagrams (FLD) and forming limit curves (FLC) represent a first safety criterion for deep drawing operations. The level of FLC is strongly strain path dependent as observed by experimental and numerical results and therefore non-proportional strain paths need to be incorporated when analyzing formability of sheet metal components. Simulations using finite element method allow accurate predictions of stress and strain distributions in complex stamped parts. However, the prediction of localized necking is a difficult task and the combination of forming limit diagram analysis with finite element simulations often fail to give the right answer, if complex strain paths are not included in these predictions.  相似文献   

7.
Digital image correlation (DIC) analysis methods can provide very accurate strain measurement that is useful for identifying the onset of localized necking and thus determining the forming limit strains of sheet metals. Several different DIC procedures to establish a forming limit diagram (FLD) are compared including both position dependent and time dependent measurement methods where the latter is found to be more accurate for an Al–Mg–Si alloy. Since FLD standards are still being developed to include DIC methods, a new DIC-based time dependent measurement method for the forming limit strains is proposed in this research: (1) Surface topography is extracted from the DIC data and changes in surface height difference are obtained, of the test specimen; (2) The onset of localized necking is identified by the limit of stable flow of the surface height difference or the first derivative of the surface height difference near the development of a local neck when using the Marciniak test procedure. Compared to existing methods, this new procedure more accurately defines the onset of necking and the boundary of safe deformation of an FLD.  相似文献   

8.
锌层对电镀纯锌钢板成形性能的影响研究   总被引:1,自引:1,他引:0  
分析电镀锌钢板的成形特性,包括镀层对力学性能和成形极限的影响,镀层损伤行为以及摩擦系数和润滑剂粘度的关系等。结果表明,电镀纯锌层对钢板的力学性能和成形极限影响很小。随着运动粘度的增加,电镀锌钢板的摩擦系数逐渐降低。与合金化镀层相比,电镀纯锌镀层更易随基板变形,因此表面裂纹出现较晚且数量较少。  相似文献   

9.
The stress–strain behavior of sheet metal is commonly evaluated by tensile test. However, the true stress–strain curve is restricted up to uniform elongation of the material. Usually, after the uniform elongation of the material the true stress–strain is obtained by extrapolation. The present work demonstrates a procedure to find out the true tensile stress–strain curve of the steel sheet after necking using digital image correlation (DIC) technique. Hill’s normal anisotropic yield criteria and local strains measured by DIC technique are used to correct the local stress and strain states at the diffuse necked area. The proposed procedure is shown to successfully determine the true tensile stress–strain curve of ferritic and dual-phase steel sheets after necking/uniform elongation.  相似文献   

10.
The material properties for the analytical and numerical simulation in sheet metal processes, especially in tube hydroforming process, are generally obtained from the uniaxial tensile test of raw sheet material. However, the validation of the formability and reliability of the numerical simulation for the tube hydroforming process arises from the fact that the material characteristics of tubes are different from those of the raw sheet materials. In order to determine the most suitable material property of the tubular material for the evaluation of forming limit on the THF process, the uniaxial tensile test for the specimens of the raw sheet metal and the roll-formed tube and the free bulge test for the roll-formed tubular material are carried out in this paper. The forming limit curves are also derived using plastic instability based on three kinds of necking criteria, which are Hill’s local necking criterion for sheet and Swift’s diffuse necking criteria for sheet and tube, to describe and explain the forming limits for the roll-formed tubular material in the THF process. In order to acquire the informative data on the forming limit curves in the THF process, the loading condition of the free bulge test is controlled. The proper band from nearly necking initiation to nearly bursting initiation has been defined for the roll-formed tubular material in the THF process. It can be concluded that the flow stress of the tubular material should be determined from the actual free bulge test to find the practically valuable forming limit curve for the THF process.  相似文献   

11.
In order to analyze the effect of viscous medium on the deformation behavior of sheet metals in viscous pressure bulging (VPB), the entire deformation process including instability and fracture was investigated real-timely by the aid of electronic speckle pattern interferometry (ESPI). Images of speckle patterns were captured continuously to obtain fringe patterns representing the full field strain rate. Values of strain rates were calculated based on the fringe patterns. The evolution of the weak region from the initial defect to the groove until crack was also observed through the fringe patterns. The onset of diffuse and localized necking were determined qualitatively and quantitatively. Experimental results show that the deformation of sheet metals in VPB passed through five states, namely, uniform deformation, strain localization, diffuse necking, localized necking and fracture. A defect emerged in strain localization. The growth of the defect caused the diffuse necking and generated a groove. The groove expanded mainly in length direction until the localized necking occurred. Finally the specimen fractured as a result of groove deepening. The tangential adhesive stress provided by viscous medium in VPB restricted the locally larger strain of the specimen. The diffuse necking was postponed greatly. Theoretical prediction of the limit strains of sheet metals in VPB would be made based on the experimental results in further work.  相似文献   

12.
The axisymmetric stretch flanging process is a common secondary operation in sheet metal stamping. The process is characterized by a uniaxial state of stress at the edge of the flange. An approximate analysis, based on the assumption that the state of stress throughout the flange is mainly uniaxial, is used to model the stretch flanging (second step) process. The approximation is derived from the total strain membrane theory of plasticity which incorporates strain hardening and normal anisotropy of the material. Under such conditions, flangeability is controlled by the tensile elongation of the metal and is limited by localized necking or fracture of the flanged edge. The analysis includes a stretching limit criterion to determine the flanging limit of the material. The influence of prestretching (first step) on flangeability is modeled using the membrane shell theory with axisymmetric deformation to solve the contact condition in stretch forming. Inputs to the model are a desired flange profile, material properties, and sheet thickness. The output includes the feasibility of the flanging operation, any requirements for prestretching and the size of the trim radius needed to successfully flange the profile. The model is verified by experimental results.  相似文献   

13.
缩径区长度对粘性介质外压缩径成形的影响   总被引:1,自引:1,他引:0  
粘性介质外压缩径采用半固态、可流动、高粘度和一定速率敏感性的高聚物作为缩径用传力介质,有效地解决了缩径成形过程的失稳起皱问题,提高了坯料的极限缩径量.本文针对不同缩径区长度对粘性介质外压缩径过程的影响问题,采用试验和有限元方法进行了分析,得到了不同缩径区长度条件下1Cr18Ni9Ti薄壁管的极限缩径量及应力与应变的分布规律.研究结果表明,缩径区长度对粘性介质外压缩径成形影响较大,缩径区长度越短,坯料的抗失稳起皱能力越强,极限缩径量越大.  相似文献   

14.
In incremental sheet forming (ISF) strains can be obtained well above the forming limit curve (FLC) that is applicable to common sheet forming operations like deep drawing and stretching. This paper presents an overview of mechanisms that have been suggested to explain the enhanced formability. The difference between fracture limit and necking limit in sheet metal forming is discussed. The necking limit represents a localized geometrical instability. Localized deformation is an essential characteristic of ISF and proposed mechanisms should stabilize the localization before it leads to fracture. In literature six mechanisms are mentioned in relation to ISF: contact stress; bending-under-tension; shear; cyclic straining; geometrical inability to grow and hydrostatic stress. The first three are able to localize deformation and all but the last, are found to be able to postpone unstable growth of a neck. Hydrostatic pressure may influence the final failure, but cannot explain stability above the FLC.  相似文献   

15.
1 Introduction MH/Ni batteries have supper specific energy density, better performance of charging and discharging, and are friendly to the surroundings. So, MH/Ni batteries have been applied widely in power tools[1]. The design of MH/Ni batteries is limi…  相似文献   

16.
D. Figueroa 《Corrosion Science》2008,50(4):1066-1079
This paper describes an investigation of electrodeposited Zn-14% Ni and aluminium-based SermeTel 1140/962 coatings as possible replacements for cadmium. Slow strain rate tests were performed to measure the extent of direct hydrogen embrittlement of a high strength steel substrate as a result of the coating process and of hydrogen re-embrittlement caused by coating corrosion. The level of re-embrittlement was shown to depend on both the electrochemical potential of the coating and its barrier properties. Zn-14% Ni coatings caused the most re-embrittlement as they had the most active potential and contained through-thickness defects which left the steel exposed to hydrogen uptake. The microstructure of the high strength steel was also shown to be an important factor affecting the extent of embrittlement. AerMet 100 steel was more resistant than 300M steel and this was attributed to the presence of reverted austenite surrounding the martensite laths in AerMet 100, which trapped absorbed hydrogen and prevented a critical hydrogen concentration being reached in the more susceptible martensite phase.  相似文献   

17.
This study uses bulge tests to establish the forming limit diagram (FLD) of tubular material AA6011. A self-designed bulge forming apparatus of fixed bulge length and a hydraulic test machine with axial feeding are used to carry out the bulge tests. Loading paths corresponding to the strain paths with a constant strain ratio at the pole of the bulging tube are determined by FE simulations linked with a self-compiled subroutine and are used to control the internal pressure and axial feeding punch of the test machine. After bulge tests, the major and minor strains of the grids beside the bursting line on the tube surface are measured to construct the forming limit diagram of the tubes. Furthermore, Swift's diffused necking criterion and Hill's localized necking criterion associated with Hill's non-quadratic yield function are adopted to derive the critical principal strains at the onset of plastic instability. The critical major and minor strains are plotted to construct the forming limit curve (FLC). The effects of the exponent in the Hill's non-quadratic yield function and the normal anisotropy of the material on the yield locus and FLC are discussed. Tensile tests are used to determine the anisotropic values in different directions with respect to the tube axis and the K and n values of the flow stress of the tubular material. The analytical FLCs using the n values obtained by tensile tests and bulge tests are compared with the forming limits from the forming limit experiments.  相似文献   

18.
文章针对4种不同种类的镀锌钢板开展了锌层附着特性和成形特性研究,深入分析了镀锌钢板的抗粉化和剥落性能以及锌层对钢板成形极限和极限拱顶高的影响。结果表明,对于镀层强度较高的热镀锌铁合金钢板,其抗粉化和剥落性能较差。且随着温度的升高,镀锌板的锌层脱落量增加。锌层对钢板成形极限的影响很小,但对极限拱顶高有一定影响。  相似文献   

19.
Surface distortions in the form of localized buckles and wrinkles are often observed in sheet metal forming process. In many cases the presence of wrinkles is unacceptable for the final product and the purposes of assembly. Because of the trend in recent years towards thinner gauges and higher strength, wrinkling is increasingly becoming a more common and troublesome mode of failure in sheet metal forming.In this study, a numerical analysis for evaluating a wrinkling limit diagram (WLD) for an anisotropic sheet subjected to biaxial plane-stress is presented. Here the scheme of plastic bifurcation theory for thin shells based on the Donnell–Mushtari–Vlasov shell theory is used. The effects of various material parameters — yield stress, strain-hardening coefficient and normal anisotropy — and geometrical parameters on the WLD are investigated numerically and compared with the results of the experiments of Kawai and Havranek.  相似文献   

20.
 针对冷轧薄钢板St14在单向拉伸试验中出现的试样“双缩颈”现象,结合观察试样缩颈断裂处的形态,引用薄板单向拉伸分散性失稳和集中性失稳理论对其做出合理解释。通过拉伸过程应变网格分析,验证了薄板拉伸分散性失稳和集中性失稳的存在。明确薄板拉伸失稳的特性,更加有利于正确判定和合理利用深冲压用冷轧薄钢板的塑性指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号