首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cultivation of nitritation granules in sequencing batch reactor (SBR) by seeding conventional floccular activated sludge was investigated using ethanol-based synthetic wastewater. Reducing settling time offers selection pressure for aerobic granulation, and stepwise increase of influent N/C ratio can help to selectively enrich ammonia oxidizing bacteria (AOB) in aerobic granules. The spherical shaped granules were observed with the mean diameter of 1.25 mm, average settling velocity of 1.9 cm s(-1) and the sludge volume index (SVI) of 18.5-31.4 ml g(-1). After 25 days of operation, the nitrogen loading rate reached 0.0455 kg NH(4)(+)-N (kg MLSS·d)(-1), which was 4.55 times higher than that of the start-up period. The mature granules showed high nitrification ability. Ammonia removal efficiency was above 95% and nitrite accumulation ratio was in the range of 80-95%. The nitrifying bacteria were quantified by fluorescence in situ hybridization analysis, which indicated that AOB was 14.9 ± 0.5% of the total bacteria and nitrite oxidizing bacteria (NOB) was 0.89 ± 0.1% of the total bacteria. Therefore, AOB was the dominant nitrifying bacteria. It was concluded that the associated inhibition of free ammonia at the start of each cycle and free nitrous acid during the later phase of aeration may be the key factors to start up and maintain the stable nitritation.  相似文献   

2.
Single-stage Nitrogen removal using Anammox and Partial nitritation (SNAP) process was newly developed as an economical nitrogen removal process for ammonium rich wastewaters. The experimental studies for the evaluation of SNAP process were carried out using a novel biofilm reactor, in which hydrophilic net-type acryl fiber biomass carrier was applied. This SNAP reactor was operated under operational conditions of pH 7.5-7.7, 35 degrees C and DO 2-3 mg/L, and 60 to 80% of influent NH4-N was removed under loading rate of 0.48 kg-N/m3/d. Through the DNA analysis of the attached sludge, it was made clear that ammonium oxidizing bacteria (AOB) and anammox bacteria coexisted in the attach-immobilized sludge on the acryl fiber biomass carrier. Favorable conditions for the growth of anammox bacteria were created inside attach-immobilized nitrifying sludge. Two kinds of anammox bacteria and two kinds of AOB were detected in the SNAP sludge. Existence ratios of anammox and AOB were estimated to be 15% and 8.7%, respectively, based on the obtained clone numbers. This coexisting condition was confirmed by the FISH image of SNAP sludge and its confocal laser scanning microscope.  相似文献   

3.
Nitrogen removal via the nitrite pathway results in significant savings in both aeration costs and COD requirements for denitrification when compared to the conventional biological nitrogen removal process. Implementation of the nitrite pathway for simultaneous C/N/P removal in a single sludge system has a major drawback: the aeration phase disfavours denitrifying phosphorus removal. A possible configuration to overcome this issue is the utilisation of a two-sludge system where autotrophic and heterotrophic populations are physically separated. This paper experimentally demonstrates the feasibility of a nitrite-based two-sludge system with sequencing batch reactors (SBR) for the treatment of urban wastewater: a heterotrophic SBR with denitrifying PAOs for P removal and an aerobic SBR for N removal. Partial nitrification was attained in the autotrophic SBR so that shortcut biological nitrogen removal was achieved by using the anoxic dephosphatation activity of DPAOs. Finally, the effect of operating this system without pH control was studied using different influent pH values (pH = 6.8, 7.5 and 8.2) and, despite some efficiency lost due to the pH fluctuations, the system was able to remove most of the C, N and P present in the wastewater.  相似文献   

4.
Factors affecting cultivation of extremely slow-growing bacteria (anaerobic ammonium oxidiser, doubling time 11 days) were investigated by using upflow anaerobic sludge blanket (UASB) reactors which can maintain high solid retention time. The effects of concentrations of DO, free ammonia (FA), and nitrite on activation of anammox activity were tested during the start-up period. The reactor was inoculated with granular sludge collected from a full-scale UASB reactor used for treating brewery wastewater, and sludge from a piggery wastewater treatment plant and rotating biological contactor treating sewage. Results of continuous operation showed that concentrations of DO, free ammonia (FA) and nitrite in the reactors played a key role in stimulating the anammox activity during start-up period. It is crucial to keep DO below 0.2 ppm, FA below 2 mg/L and nitrite nitrogen below 35 mg/L to cultivate anammox cells in the continuous bioreactor. When the levels of DO, FA and nitrite in the influent were controlled at less than the inhibition levels, the anammox activity increased gradually in the anaerobic condition. Addition of hydrogen sulphide into the reactor enhanced anammox activity in the continuous culture. Through the SEM, TEM and FISH analysis, anammox bacteria were detected in the granular sludge after 3 months of continuous operation.  相似文献   

5.
Achieving biological nitrogen removal via nitrite by salt inhibition.   总被引:1,自引:0,他引:1  
The principal aim of this paper is to develop and evaluate an approach to obtain nitrogen removal bypassing nitrate. The method is based on the addition of sodium chloride (NaCI), selective inhibitor of nitrite oxidizers, to influent. Validation of the new method was conducted on laboratory-scale experiments applying the SBR activated sludge process to domestic wastewater with low C/N ratio. With the aerobic-anoxic sequence, three parallel SBRs achieving complete nitrification-denitrification are dosed by a certain concentration of NaCI to influent. The high nitrite accumulation, depending on the salinity in the influent and the application duration of salt, was obtained in SBRs treating saline wastewater. Optimum dosage and application duration of salt, which interact to determine the performance and stabilization of nitrite accumulation, were determined by experiment. In order to evaluate the method, the response of the biological treatment system to salt concentration was also explored. The repeatability of the method was further verified under various operational conditions. Microbial population tests supported the presumption that nitrite oxidizers are inhibited by salt addition and washed out of the system. The presented method is valuable to offer a solution to realize nitrogen removal via nitrite under normal conditions.  相似文献   

6.
林可霉素高浓度有机废水处理技术   总被引:1,自引:0,他引:1  
王冰 《水资源保护》2008,24(4):53-57
采用厌氧颗粒和好氧活性污泥分别对内循环厌氧反应器(IC)和间歇式活性污泥法(SBR)进行污泥接种培养,研究水解酸化-IC-SBR工艺在林可霉素生产废水处理方面的运行效果。结果表明:在进水COD的质量浓度为6 000~9 000 mg/L,IC和SBR反应器中有机负荷分别为0.82 kg/(kg.d)和0.26 kg/(kg.d)左右的情况下,IC和SBR反应器分别运行60 d和7 d,COD平均去除率分别达到91%和61%,出水COD的质量浓度在300 mg/L以下,达到GB 8978—1996《污水综合排放标准》二级标准。  相似文献   

7.
In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0.  相似文献   

8.
Completely autotrophic nitrogen removal over nitrite (CANON) is a cost-effective nitrogen removal process. Implementation of the CANON process relies on the cooperation of ammonium-oxidizing and Anammox bacteria, as well as the inhibition of nitrite-oxidizing bacteria. Strict limitations on dissolved oxygen (DO) concentration in the reactor, and the addition of sufficient inorganic carbon in the influent, were adopted as the main operational strategies. The reactor was fed with synthetic inorganic wastewater composed mainly of NH(4)(+)-N, and operated for 106 days. Stable nitrogen removal rates (NRR) of around 1.4 kg N m(-3) d(-1) were obtained at ambient temperature. Morphological characteristics and analysis of bacterial community confirmed the formation of functional outer aerobic and inner anaerobic granular sludge, providing evidence of stable nitrogen removal.  相似文献   

9.
In this study, laboratory-scale experiments were conducted applying a Sequencing Batch Reactor (SBR) activated sludge process to a wastewater stream from a pharmaceutical factory. Nitrogen removal can be achieved via partial nitrification and denitrification and the efficiency was above 99% at 23 degrees C+/-1. The experimental results indicated that the nitrite oxidizers were more sensitive than ammonia oxidizers to the free ammonia in the wastewater. The average accumulation rate of nitrite was much higher than that of nitrate. During nitrogen removal via the nitrite pathway, the end of nitrification and denitrification can be exactly decided by monitoring the variation of pH. Consequently, on-line control for nitrogen removal from the pharmaceutical manufacturing wastewater can be achieved and the cost of operation can be reduced.  相似文献   

10.
塔式生物滤池处理城市污水的研究   总被引:4,自引:0,他引:4  
刘军  郭茜  瞿永彬 《给水排水》2001,27(1):18-21
尽管目前塔式生物滤池在城市污水处理中运用较少 ,但在有可资利用的地形时它可达到少动力或无动力运行 ,有较大的优势。研究了塔式生物滤池的工作参数及其处理特点。  相似文献   

11.
同步硝化反硝化脱氮研究   总被引:48,自引:2,他引:46  
在控制SBR反应器保持良好的好氧状态条件下 ,考察进水COD/NH3比值对同步硝化反硝化脱氮效率的影响。同时也对同步硝化反硝化机理进行了初步的探讨。研究表明 ,进水COD/NH3比值越高 ,总氮去除率越高 ,同步硝化反硝化现象越明显。由该试验可以推断活性污泥菌胶团中异养硝化菌和好氧反硝化菌的存在。  相似文献   

12.
In municipal WWTP with anaerobic sludge digestion, 10-20% of total nitrogen load comes from the return supernatant produced by the final sludge dewatering. In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries, in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports the experimental results of the SHARON-ANAMMOX process application to anaerobic supernatant taken from the urban Florentine area wastewater treatment plant (S. Colombano WWTP). A nitritation labscale chemostat (7.4 L) has been started-up seeded with the S. Colombano WWTP nitrifying activated sludge. During the experimental period, nitrite oxidising bacteria wash-out was steadily achieved with a retention time ranging from 1 to 1.5 d at 35 degrees C. The Anammox inoculum sludge was taken from a pilot plant at EAWAG (Zurich). Anammox biomass has been enriched at 33 degrees C with anaerobic supernatant diluted with sodium nitrite solution until reaching a maximum specific nitrogen removal rate of 0.065 kgN kg(-1) VSS d(-1), which was 11 times higher than the one found in inoculum sludge (0.005 kgN kg(-1) VSS d(-1). In a lab-scale SBR reactor (4 L), coupled with nitritation bioreactor, specific nitrogen removal rate (doubling time equal to 26 d at 35 degrees C and at nitrite-limiting condition) reached the value of 0.22 kgN kg(-1) VSS d(-1), which was approximately 44 times larger than the rate measured in the inoculum Anammox sludge.  相似文献   

13.
The anaerobic ammonium removal from a piggery waste with high strength (56 g COD/L and 5 g T-N/L) was investigated using a lab-scale upflow anaerobic sludge bed reactor at a mesophilic condition. Based on the nitrogen and carbon balance in the process, the contribution of autotrophic and heterotrophic organisms was also evaluated in terms of the influent NO2-N/NH4-N ratio (1:0.8 and 1:1.2 for Phase 1 and Phase 2, respectively). The result of this research demonstrates that the anaerobic ammonium removal from the piggery waste, using the UASB reactor, can be performed successfully. Furthermore, it appears that by using granular sludge as the seed biomass, the ANAMMOX reaction can start more quickly. Average nitrogen conversion was 0.59 kg T-N/m3 reactor-day (0.06 kg T-N/kg VSS/day) and 0.66 kg T-N/m3 reactor-day (0.08 kg T-N/kg VSS/day) for Phase 1 and Phase 2. The NO2-N/NH4-N removal ratio by the ANAMMOX was 1.48 and 1.79 for Phase 1 and Phase 2. The higher nitrite contents (about 50%) in the substrate resulted in higher nitrite nitrogen removal by the partial denitritation, as well as the ANAMMOX reaction, implying higher potential of partial denitritation. However, the result reveals that the ANAMMOX reaction was influenced less by the degree of partial denitritation, and the ANAMMOX bacteria did not compete with denitritation bacteria. The colour of the biomass at the bottom of the reactor changed from dark gray to dark red, which was accompanied by an increase in cytochrome content. At the end of the experiment, red-coloured granular sludge with diameter of 1-2 mm at the lower part of the reactor was also observed.  相似文献   

14.
The sequencing batch reactor (SBR) process concept was applied to achieve efficient ammonium removal via nitrite under both laboratory and pilot-scale conditions. Both sets of experimental results show that without pH control or carbon addition the nitritation process consistently converted approximately 50% of the ammonium from biosolids dewatering liquids to nitrite with hydraulic retention times (HRT) as short as 10 h. The results from the pilot-scale study also indicate that the selective oxidation of ammonium to nitrite is a reliable process as the accumulation of nitrate was never an issue during a 330-day trial. The SBR process concept was extended to achieve complete nitrogen removal through nitritation and denitritation in the laboratory scale. The experimental results indicate that a total reduction of 96-98% of the ammonium nitrogen from biosolids dewatering liquids (influent concentration typically 1,200 g m(-3)) was achieved with a short HRT of 1.1 d and a removal rate of 1.05 kgNm(-3)d(-1). This process concept was tested at pilot scale where the nitritation process could be started up without temperature control in a short period of time. Nitrogen removal rates up to 1.2 kgNm(-3)d(-1) at an HRT of 0.88 d have been obtained. COD to nitrogen ratios required in the pilot plant were consistently in the range 1.6-1.9 kgCOD kg(-1)N removed.  相似文献   

15.
The recently proposed DEAMOX (DEnitrifying AMmonium OXidation) process combines the anammox reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. This paper firstly presents a feasibility study of the DEAMOX process using synthetic (ammonia + nitrate) wastewater where sulphide is replaced by volatile fatty acids (VFA) as a more widespread electron donor for partial denitrification. Under the influent N-NH+4/N-NO3(-) and COD/N-NO3(-) ratios of 1 and 2.3, respectively, the typical efficiencies of ammonia removal were around 40% (no matter whether a VFA mixture or only acetate were used) for nitrogen loading rates (NLR) up to 1236 mg N/l/d. This parameter increased to 80% by increasing the influent COD/N-NO3(-) ratio to 3.48 and decreasing the influent N-NH4 +/N-NO3(-) ratio to 0.29. As a result, the total nitrogen removal increased to 95%. The proposed process was further tested with typical strong nitrogenous effluent such as reject water (total N, 530-566 mg N/l; total COD, 1530-1780 mg/l) after thermophilic sludge anaerobic digestion. For this, the raw wastewater was split and partially ( approximately 50%) fed to a nitrifying reactor (to generate nitrate) and the remaining part ( approximately 50%) was directed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance up to NLR of 1,243 mg N/l/d in the DEAMOX reactor was achieved resulting in 40, 100, and 66% removal of ammonia, NOx(-), and total nitrogen, respectively.  相似文献   

16.
Anaerobic Ammonium Oxidation (ANAMMOX) is a novel biological nitrogen removal process, which is regarded as the most economical process at present. In this paper, two lab-scale UASB reactors, one of which was inoculated with the mixture of anaerobic sludge and aerobic sludge, the other with river sediments, were started up, using the inorganic synthetic water containing ammonium and nitrite as influent. After 421 days' and 356 days operation respectively, the ammonium removal efficiencies in two reactors reached 94% and 86% respectively, the total nitrogen volumetric loading rates were 2.5 and 1.6 kgN/m3 x d. ANAMMOX granules were obtained in both reactors; the color of most granules was brown, but some of them were red. Based on the observation and studies on the microstructure of the granules, three kinds of ANAMMOX granular sludge formation mechanisms were proposed: adhering biofilm and disintegrated granular core mechanism, adhering biofilm and inorganic core mechanism and the self-coherence mechanism. For phylogenetic characterization of anaerobic ammonium oxidizers, 16S rDNA approach was performed using Planctomycetales-specific PCR amplification. The dominant anammox bacteria occupied more than 90% of Planctomycetales-specific bacteria, and 27% of all bacteria in reactors. The dominant anammox bacteria distantly related to all currently reported candidate anammox genera. Functional gene of amoA was analyzed to investigate the 'aerobic' ammonium-oxidizing bacteria in beta-Proteobacteria. The 'aerobic' ammonium-oxidizing bacteria were more diverse than anammox bacteria, but most of them clustered in anoxic ammonium-oxidizing Nitrosomonas eutropha/europaea groups. The composition of 'aerobic' ammonium-oxidizing bacteria is only 2% of all of bacteria in reactors.  相似文献   

17.
To model biological nitrogen and phosphorus removal systems with an affordable complexity, the ASM2d model structure is based on many assumptions. In this study, some of these assumptions, however, were observed to become invalid when the biological behaviour in the system altered in response to changes in the operation of the system, a pilot-scale N and P removing SBR. Particularly, the three applied operational scenarios resulted in three distinctive responses in the SBR, namely pronounced limitation of the hydrolysis of the organic nitrogen, nitrite build-up during aerobic conditions and also nitrite build-up during anoxic conditions. This shows that even for the same system with the same influent wastewater composition, the model structure of the ASM2d does not remain constant but adapts parallel to dynamic changes in the activated sludge community. On the other hand, the three calibrated ASM2d models still lacked the ability to entirely describe the observed dynamics particularly those dealing with the phosphorus dynamics and hydrolysis. Understanding the underlying reasons of this discrepancy is a challenging task, which is expected to improve the modelling of bio-P removing activated sludge systems.  相似文献   

18.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.  相似文献   

19.
A process for autotrophic nitrogen removal named aerobic/anoxic deammonification wherein NH4+ is oxidized by nearly 50% to NO2- and subsequently the ammonia is converted together with the nitrite to molecular nitrogen (N2 gas), has come to full-scale application within the last few years. In this research, sludge from a biological rotation disk located at a landfill leachate plant at Mechernich, Germany, which is capable of performing the deammonification process, was used as seed sludge for acclimating deammonification activities in laboratory scale batch-reactors. In parallel, the same tests were performed with normal activated sludge. Research results indicated that deammonification activities could be obtained from the seeded reactor and also, with limited performance, from normal activated sludge in a single SBR system after several months acclimation. It was also seen that oxygen is an important factor that influences the deammonification from both the acclimatization process and process running. Further results were approved that report an impact of nitrite as a process intermediate on the closely related process of anaerobic ammonia oxidation ("Anammox"). However, limiting concentrations on a bacteria population performing deammonification were found to be different to those reported for a pure Anammox-culture. Also the influence of another intermediate, hydrazine, was tested for speeding up the acclimating process by inducing the deammonification activities and recovering the activities of deammonification from nitrite inhibition.  相似文献   

20.
In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports experimental results on a possible technical solution to upgrade the S. Colombano treatment plant which treats wastewater from the Florentine urban area. The idea is to use 50% of the volume of the anaerobic digester in order to treat external sewage sludge (as septic tank sludge) together with waste activated sludge and to treat the resulting effluent on a SHARON-ANAMMOX process in order to remove nitrogen from the anaerobic supernatant. Anaerobic co-digestion, tested in a 200 L pilot plant, enables low cost treatment of septic tank sludge and increases biogas production; however, it also increases the nitrogen load re-circulated to the WWTP, where nitrogen removal efficiency is already low (<50%), due to the low COD/N ratio, which limits predenitrification efficiency. Experimental results from a SHARON process tested in a lab-scale pilot plant show that nitrite oxidising bacteria are washed-out and steady nitrite production can be achieved at retention times in the range 1 - 1.5 days, at 35 degrees C. In a lab-scale SBR reactor, coupled with a nitration bioreactor, maximum specific nitrogen removal rate under nitrite-limiting conditions (with doubling time equal to about 26 days at 35 degrees C) was equal to 0.22 kgN/kgSSV/d, about 44 times the rate measured in inoculum Anammox sludge. Finally, a cost analysis of the proposed upgrade is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号