首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用溶剂萃取—化学沉淀法从废锂离子电池正极材料中回收硫酸钴、氢氧化镍和氟化锂,比较了萃取剂P507和Cyanex272对钴、镍的萃取分离性能。试验结果表明:1-1-1型废锂离子电池正极材料浸出液经P204除锰后,用0.5 mol/L P507或0.6 mol/L Cyanex272经两级错流萃取钴,钴萃取率分别为98.21%和99.44%,镍共萃取率分别为24.42%和4.26%,锂共萃取率分别为15.84%和5.11%,Cyanex272对钴镍的萃取分离性能明显优于P507;P507和Cyanex272负载有机相分别用CoSO_4溶液和HAc-NaAc溶液洗脱共萃取的镍和锂,然后用硫酸反萃取钴,反萃取液中Co/Ni质量比分别为3 217(P507)和12 643(Cyanex272),蒸发结晶可得高纯硫酸钴;萃余液中的镍、锂分别用NaOH和HF沉淀,可得氢氧化镍和氟化锂固体。采用此方法,废锂离子电池正极材料中的钴、镍、锂都得到有效回收。  相似文献   

2.
C.Bourget等研究了Cyanex○R301二元萃取体系从硫酸盐溶液中回收钴和镍的萃取与反萃取特性,也研究了体系对钙、锰和镁的选择性特性。这些二元萃取体系由Cyanex○R301与碱性萃取剂(PrimeneJMT,AmberliteLA2,Alamine336和Aliquat336)组成。根据萃取与反萃取特性(效率和速率)及体系对钙、锰和镁的选择性,进行了筛选试验以选择最合适的二元萃取体系。从筛选试验看出,Cyanex○R301/胺体系都能从钙、锰和镁中选择性萃取钴和镍。任何一种胺被加入到Cyanex301中,都对镍和钴的萃取与反萃取动力学和效率有很大的协同作用。在胺类萃取体系中,Cy…  相似文献   

3.
C.Bourget等研究了Cyanex301二元萃取体系从硫酸盐溶液中回收钴和镍的萃取与反萃取特性,也研究了体系对钙、锰和镁的选择性特性。这些二元萃取体系由Cyanex R301与碱性萃取剂(Primene JMT,Amberlite LA-2,Alamine 336和Aliquat 336)组成。根据萃取与反萃取特性(效率和速率)及体系对钙、锰和镁的选择性,进行了筛选试验以选择最合适的二元萃取体系。  相似文献   

4.
B.Ramachandra Reddy等研究了用有机膦萃取剂TOPS99,PC88A和Cyanex272从硫酸盐溶液中萃取镉(Ⅱ)。研究结果表明,镉(Ⅱ)的萃取率随平衡水相pH和萃取剂浓度的增大而增大。用有机膦  相似文献   

5.
Basudev Swain等研究了用Na—Cyanex272作萃取剂从混合硫酸盐溶液中溶剂萃取钴和锂,研究了不同参数,如料液pH,萃取剂浓度,料液中钴、锂离子浓度的影响,以及不同无机酸,如H2SO4,HCl,HNO3的反萃取行为。用0.03moL/L Na—Cyanex272,在平衡pH为6.90,混合溶液中硫酸钴和硫酸锂的浓度为0.01mol/L条件下萃取钴和锂的最大分离系数为62。在此条件下,钴的萃取率约84%,约8%的锂被共萃取。  相似文献   

6.
P.E.Tsakiridis和S.Agatzini-Leonardou研究了用膦类萃取剂Cyanex272和Cyanex302从硫酸镍溶液中同时萃取分离Co(Ⅱ)和Mg(Ⅱ)。水相中的镍用Cyanex272浓缩,然后用合成的镍废电解液反萃取,产生适合于镍电积的溶液。  相似文献   

7.
研究了采用P507-Cyanex272协萃体系从电解锰合格液中萃取分离锰镁钙,考察了水相pH、有机相皂化率、萃取相比、萃取剂体积分数、萃取温度、混合时间及Cyanex272添加量对锰、镁、钙离子萃取率的影响,并对负载有机相进行洗涤、反萃取分离去除钙镁杂质。结果表明:在水相pH=4.5、有机相皂化率50%、萃取相比Vo/Va=2.5/1、萃取剂体积分数30%、萃取温度35℃、混合时间5 min、Cyanex272占比60%条件下,锰、镁、钙萃取率分别为64.28%、15.77%和16.24%;负载有机相分别用0.03 mol/L稀硫酸溶液和30 g/L硫酸锰溶液进行两段洗涤,再以1 mol/L硫酸反萃取,反萃取液中锰、镁离子质量浓度分别为52.57 g/L和0.27 g/L,反萃取液再经高纯碳酸锰中和—协同萃取—反萃取,可满足电池级硫酸锰生产要求。  相似文献   

8.
介绍了含磷类萃取剂、Cyanex272和胺类萃取剂在不同溶液体系中钴镍分离的应用,并分析了协同萃取体系在钴镍分离中的应用,指出协同萃取体系是今后钴镍分离的发展方向。  相似文献   

9.
用非平衡溶剂萃取法分离钴镍的研究   总被引:3,自引:0,他引:3  
以二-(2-乙基己基)磷酸(代号为P_204)作萃取剂,研究了用非平衡溶剂萃取法从氨性硫酸盐溶液中分离钴镍过程中,水相平衡pH值、两相混合时间、空气氧化时间和负载有机相用硫酸反萃等因素对分离钴镍的影响.结果表明:在水相中添加适量的(NH_4)_2S_2O_8或让料液在空气中自然氧化,均可使钴(Ⅱ)氧化成动力学惰性配合物一钴(Ⅲ)氨配离子.此时钴的萃取速率较慢,而镍的萃取速率较快,控制两相混合时间,用非平衡溶剂萃取法可有效分离钴镍.用稀硫酸溶液从负载有机相中反萃镍,镍反萃率可达99%以上.  相似文献   

10.
采用溶剂萃取法,研究了用氨皂化的Cyanex272(二(2,4,4-三甲基戊基)次膦酸)对镍离子含量为25 g·L~(-1),钴离子含量为0.1 g·L~(-1)的氯化镍水溶液进行二级萃取除去溶液中杂质钴过程。考察了萃取振荡时间、有机相与水相比例(O/A)、初始水相pH值和Cyanex272体积浓度等因素对钴、镍离子萃取的影响。在单因素实验的基础上进行了正交试验,分别确定了各因素对钴、镍离子的影响主次关系。在综合考虑情况下确定了优化的工艺条件为:振荡时间为30 min、相比(O/A)为0.10∶1.00、初始水相pH值为5、 Cyanex272体积浓度为15%。此时,镍离子的损失率为10.84%,钴离子的萃取率为99.11%,水相中钴离子浓度为0.83×10~(-6)。通过红外光谱分析可知,钴、镍离子均会与萃取剂发生阳离子交换反应,且在钴、镍离子同时存在时,萃取剂与钴离子的结合要优于同镍离子的结合。  相似文献   

11.
B.Jakovljevic等研究了Cyanex301二元萃取体系从氯化物溶液中回收钴和镍的萃取和反萃取性能,也研究了这些体系对钙、锰和镁的选择性。这些二元萃取体系由Cyanex301和碱性萃取剂(Primene JMT,Amberlite LA-2,Alamine 336和Aliquat 336)组成。  相似文献   

12.
研究了用Cyanex272从高纯硫酸镍溶液中萃取分离痕量钴,考察了料液pH、Cyanex272体积分数、料液温度、相比(V_o/V_a)对萃取分离钴的影响,分析了萃取反应的热力学。结果表明:采用Cyanex272作为萃取剂可去除高纯硫酸镍溶液中的痕量钴;在料液pH=5.5、温度60℃、相比(V_o/V_a)=1/1条件下,用10%Cyanex 272+10%TBP+80%磺化煤油进行一级萃取,可将溶液中钴质量浓度降至0.5 mg/L以下;萃取反应为吸热反应,升温有利于钴的萃取分离。  相似文献   

13.
以Versatic10为萃取剂从含镍、钴、钙、镁离子的合成硫酸盐溶液中萃取分离镍、钴离子。在25℃、振荡强度200r/min、振荡时间4 min的条件下,Versatic10萃取镍、钴离子的最佳条件为:初始pH2.5、相比O/A=1/3、皂化率60%。用去离子水(pH=6.50)对负载有机相按相比O/A=1/1洗涤2次,钙、镁离子的共萃率均可降至0.5%以下。用2mol/L硫酸按相比O/A=1/1反萃时,镍、钴的反萃率均在99%以上。  相似文献   

14.
科技文摘     
用TOPS99,PC88A ,Cyanex2 72及其混合物从硫酸盐溶液中溶剂萃取镉 (Ⅱ )B .RamachandraReddy等研究了用有机膦萃取剂TOPS99,PC88A和Cyanex2 72从硫酸盐溶液中萃取镉 (Ⅱ )。研究结果表明 ,镉 (Ⅱ )的萃取率随平衡水相 pH和萃取剂浓度的增大而增大。用有机膦萃取剂萃取镉 (Ⅱ )涉及到阳离子交换机理 ,金属与萃取剂的配比为 1∶3。用FTIR和31 PNMP表征的镉 (Ⅱ )与TOPS99的固体配合物 ,证实了金属配合物中含有P—OH基团。也研究了镉的萃取行为及从镉、镍混合物中分离镉的可能性。[张丽霞摘译自《Hydrometallurgy》2 0 0 4 ,74(…  相似文献   

15.
柯英 《有色冶炼》2001,30(4):10-12,43
钴壳用二氧化硫气体作还原剂进行了氨浸,研究了浸出时间,浸出温度和碳酸铵浓度对镍、钴、铜、铁和锰浸出的影响,二氧化硫作还原剂,用碳酸铵溶液可实现从钴壳中选择性浸出镍,钴 和铜,在适当的浸出条件下,金属元素的浸出率分别为Ni90%,Co97%,Cu93%,Fe1.8%和Mn6.0%。使用溶剂萃取从碳酸铵溶液中分离镍、钴和铜,萃取试验用LIX-84作萃取剂,铜和镍的萃取率在99%以上,钴则在1.0%以下,钴的萃取被亚硫酸盐离子遮蔽,含有镍和铜的有机相用稀硫酸或盐酸在pH=1.7时反萃镍,pH=0时反萃铜。  相似文献   

16.
本文介绍了攀枝花硫钴精矿浸出净化液镍钴分离及钴产品制备的试验研究。钴镍分离采用P507萃取,钴的萃取率大于99.5%,镍的萃取率在0.01%以下。有机相用硫酸反萃得到硫酸钴溶液,用盐酸反萃得到氯化钴溶液。由氯化钴溶液可制取纯氧化钴粉;由硫酸钴溶液可制备结晶硫酸钴;由萃余液可沉淀出碳酸镍粗产品。  相似文献   

17.
E .Lindell等人研究了用Cyanex2 72作萃取剂、以异辛烷或D 70作稀释剂、以氨水作中和剂 ,从硫酸盐水溶液中萃取钴镍的动力学和选择性。萃取试验在强搅拌直流柱式反应器中进行。当氨与萃取剂的量比为 1∶1时 ,用浓氨水预中和可形成均相溶液。接触时间在 2~ 90s内相分离较快 ,钴镍的萃取动力学速度也非常快。在最初的 1 0s内 ,约 90 %的金属被萃取到有机相中。较快的萃取动力学归因于预中和萃取剂的胶束特性 ,而与中和度无关。在相接触的瞬间 ,当少量钴镍被萃取时 ,有机相中形成内含水、金属离子和氨的反向胶束。随着接触时…  相似文献   

18.
多金属结核氨浸液中镍钴铜的萃取分离   总被引:2,自引:0,他引:2  
采用LIX84从氨性溶液中萃取分离镍、钴、铜。首先采用 5级逆流共萃铜、镍 ,钴留在萃余液中 ,含铜、镍的负载有机相经二级洗涤氨 ;用镍电解废液进行 7级逆流选择性反萃镍 ,实现镍与铜的初步分离 ;然后从含铜有机相中反萃铜得到纯净的硫酸铜溶液 ,选择性反萃镍得到含有少量铜的粗镍液 ,该液仍采用LIX84萃取脱铜 ,并回收铜 ,从而将铜、镍彻底分离 ,实现了用一种萃取剂分离氨浸液中的镍、钴、铜。联动连续运转试验结果表明 ,采用本研究确定的萃取工艺流程和萃取设备处理氨浸液 ,萃取分离效果好 ,试验结果稳定、可靠。金属回收率高 ,萃取回收率分别为 ( %) :Ni 99 0 ,Co 99 7,Cu 99 9。  相似文献   

19.
钴壳用二氧化硫气体作还原剂进行了氨浸,研究了浸出时间、浸出温度和碳酸铵浓度对镍、钴、铜、铁和锰浸出的影响.二氧化硫作还原剂,用碳酸铵溶液可实现从钴壳中选择性浸出镍、钴和铜.在适当的浸出条件下,金属元素的浸出率分别为Ni90%,Co97%,Cu93%,Fe1.8%和Mn6.0%.采用溶剂萃取从碳酸铵溶液中分离镍、钴、和铜.萃取试验用LIX-84作萃取剂,铜和镍的萃取率在99%以上,钴则在1.0%以下.钴的萃取被亚硫酸盐离子遮蔽.含有镍和铜的有机相用稀硫酸或盐酸在pH=1.7时反萃镍,pH=0时反萃铜.  相似文献   

20.
分别考察了微生物浸出液中主要杂质离子(Mg2+,Ca2+,Fe2+,Fe3+)对Cyanex272-P507协萃体系、Cyanex272萃取体系和P507萃取体系在低p H值条件下分离回收模拟微生物浸出液中低含量钴镍的影响。研究发现杂质离子对3种萃取体系的钴萃取率和钴镍分离系数均有较大影响,其中Fe3+的影响最大,而杂质离子对镍萃取率影响不大,其仍保持在较低水平。3个萃取体系中Cyanex272萃取体系是受杂质离子影响最严重的萃取体系,少量杂质离子的增加就会使其钴镍分离系数以及钴萃取率发生显著的下降,而Cyanex272-P507协萃体系受杂质离子影响次之,P507萃取体系受影响最小。在杂质离子浓度较低时,相对于其他两个体系,Cyanex272-P507协萃体系可以实现更低的杂质离子萃取率。运用Cyanex272-P507协萃体系萃取分离钴镍时,为尽量降低杂质离子对钴萃取率和钴镍分离系数的影响,钴镍料液中所含杂质离子Mg2+,Ca2+,Fe2+,Fe3+的最高含量分别是:90.0,21.0,52.0,8.8 mg·L-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号