首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了解决蚁群算法易陷入局部最优及收敛速度慢等问题,研究提出一种改进的蚁群算法,通过改变方向因子的计算方式来减少寻优所需时间;通过改变信息素的更新方式避免陷入局部最优解。在栅格地图中进行仿真模拟实验,综合结果表明,改进算法与传统蚁群算法及其他相关算法相比,具有得到路径更短、收敛速度更快且路径拐点更少等优点。  相似文献   

2.
针对传统蚁群算法收敛速度较慢,易陷入局部最优,初始信息素匮乏等缺点,提出一种改进的蚁群算法.初始阶段在起点与终点的连线上额外增加信息素,提高算法的收敛速度;对原有启发函数中的启发因子进行改进,提高算法的寻优效率;改进了信息素浓度的挥发公式,使其服从高斯分布,使信息素挥发动态化.仿真结果表明:改进后的蚁群算法收敛速度更快...  相似文献   

3.
栅格环境下蚁群算法规划出的移动机器人路径存在运行慢、路径弯多、转折次数多、局部最优等问题。为获得较优路径,提出了惯性蚁群算法。在传统蚁群算法规划的路径上,采用惯性优化原理,对每一个节点进行遍历,当两个节点间的优化路径上无障碍物时,将中间节点删除,换成优化路径。根据优化信息,动态调整信息素挥发系数,提高了算法环境适应能力。仿真结果表明,相比传统蚁群算法,惯性蚁群算法能更快地找到较优路径,能有效优化路径质量。  相似文献   

4.
基于蚁群粒子群融合的机器人路径规划算法   总被引:2,自引:0,他引:2  
针对复杂环境下中移动机器人路径规划问题,提出了一种基于蚁群粒子群融合的路径规划算法。该算法首先利用粒子群路径规划的环境建模方法快速规划出起始点到目标点的初始路径。然后根据产生的路径进行信息素的分配,最后经改进的蚁群算法进行进一步寻优,从而找出最优路径。经仿真证明,该方法在寻得最优路径的基础上可大大降低寻优的时间,尤其是对于复杂环境下的路径规划,其效果尤为明显。  相似文献   

5.
针对传统蚁群算法在路径规划中存在收敛速度和寻优能力不平衡,算法易陷入局部最优等问题,提出一种自适应改进蚁群算法。为了提高算法收敛速度,在栅格环境下,根据最优路径的特点以及实际环境地图的基本参数,对初始信息素进行差异化分配;为了提高蚂蚁搜索效率,在状态转移概率中引入转角启发信息并对路径启发信息进行改进;重新制定信息素更新策略,设定迭代阈值,调整信息素挥发系数和信息素浓度,使算法在迭代后期依然具有较强的搜索最优解能力;采用分段三阶贝塞尔曲线对最优路径进行平滑处理以满足机器人实际运动要求。通过实验仿真与其他算法进行对比分析,验证了改进算法的可行性、有效性和优越性。  相似文献   

6.
基于栅格法的机器人路径规划蚁群算法   总被引:32,自引:1,他引:32  
朱庆保  张玉兰 《机器人》2005,27(2):132-136
描述了一种静态环境下的机器人路径规划仿生算法.该算法用栅格法对场景进行建模,模拟蚂蚁的觅食行为,由多只蚂蚁协作完成最优路径的搜索.搜索过程采用了概率搜索策略、最近邻居策略和目标导引函数,使得搜索过程极为迅速高效.仿真实验结果表明,即使在障碍物非常复杂的地理环境,用本算法也能迅速规划出最优路径,且能进行实时规划,效果十分令人满意.  相似文献   

7.
针对蚁群算法在三维路径规划中存在的搜索效率低,易陷入停滞和局部最优等问题,对蚁群算法进行了改进.首先,根据最优路径的自身特点对初始信息素进行不均匀分配,提高算法初期的搜索效率;其次,在启发函数中引入夹角因素,使算法对于最优路径的搜索更具有方向性,并对信息素和启发函数的权重因子α和β的取值进行动态调整,加快算法收敛速度;...  相似文献   

8.
针对已知环境信息下的移动机器人三维空间路径规划问题,提出了一种基于改进蚁群算法的路径规划算法。首先描述了一种简单有效的环境建模方法,然后给出了算法在信息素的呈现、路径点的选取以及信息素的更新规则上的改进方法。仿真结果证明了算法的低耗时和实用性。  相似文献   

9.
张恒  何丽  袁亮  冉腾 《控制与决策》2022,37(2):303-313
为提升移动机器人的路径规划能力,提出一种改进双层蚁群算法,将蚁群划分为引导层蚁群和普通层蚁群.为提升算法的收敛速度和路径的平滑程度,在设计引导层蚁群启发函数时加大终点栅格的吸引力,设计普通层蚁群启发函数的同时考虑起点、终点和转折点的影响;针对复杂环境下蚁群算法死锁严重的问题,为引导层蚁群设计应对死锁问题的自由寻路-剪枝...  相似文献   

10.
基本Q学习算法应用于路径规划时,动作选择的随机性导致算法前期搜索效率较低,规划耗时长,甚至不能找到完整的可行路径,故提出一种改进蚁群与动态Q学习融合的机器人路径规划算法.利用精英蚂蚁模型和排序蚂蚁模型的信息素增量机制,设计了一种新的信息素增量更新方法,以提高机器人的探索效率;利用改进蚁群算法的信息素矩阵为Q表赋值,以减少机器人初期的无效探索;设计了一种动态选择策略,同时提高收敛速度和算法稳定性.在不同障碍物等级的二维静态栅格地图下进行的仿真结果表明,所提方法能够有效减少寻优过程中的迭代次数与寻优耗时.  相似文献   

11.
针对蚁群算法收敛速度慢、折点多、路径长等问题,提出了一种基于方向指引的蚁群算法。该算法通过引入向量夹角,重新构造了蚂蚁转移概率,提高了算法的收敛速度且路径长度更短;算法同时融合了插点策略,进一步对生成的路径进行优化,缩短了路径长度,减少路径折点数,使路径更加平滑。最后,经实验验证,提出的算法在收敛次数和路径折点数方面有明显优化效果。在仿真栅格地图中,平均收敛次数减少了68%,路径平均折点数减少了42%,平均路径长度减少了8%。  相似文献   

12.
利用信息量留存的蚁群遗传算法   总被引:8,自引:0,他引:8       下载免费PDF全文
邵晓巍  邵长胜  赵长安 《控制与决策》2004,19(10):1187-1189
提出一种结合蚁群算法中“信息量留存”思想的遗传算法.该算法将问题空间进行均匀分割,基于这些子空间选取初始种群,并定义每个子空间的初始信息量,遗传操作中根据信息量留存情况来控制个体选择.由于初始种群均匀地分散在解空间,降低了发生过早收敛的可能性;而采用蚁群算法中“信息量留存”的思想,可保证算法快速收敛到具有最优(次优)解的子空间,从而达到提高收敛速度的目的.  相似文献   

13.
基于信息素强度的蚁群算法   总被引:1,自引:0,他引:1  
现有的蚁群算法在选择路径的时候都是同时考虑信息素和路径长度两个因素,导致算法未能很好地模拟真实蚂蚁。为了更好地模拟现实蚂蚁的行为,提出一种新的蚁群算法。该算法在选择路径的时候只考虑信息素强度, 而在信息素强度初始化和信息素强度更新的时候考虑了路径长度这一因素,同时也给出一种动态的信息素更新方式。经实验验证这一算法可以取得较好的搜索效果,并且它的运算速度要比现有的蚁群算法快5倍以上。  相似文献   

14.
基于混合信息素递减的蚁群算法   总被引:1,自引:1,他引:1       下载免费PDF全文
根据蚁群算法信息素更新的特性,提出了求解旅行商问题的混合信息素递减的蚁群算法。把基本蚁群的三种不同的信息素更新方式混合在一起,同时提出了信息素递减更新的方法。新的更新方式避免了蚂蚁在寻找最优解的过程中,由于禁忌表元素的逐渐增加而限制蚂蚁巡游路径选择的缺点,减少了巡游后期信息素对于后继蚂蚁的影响,提高了后继蚂蚁的巡游质量。仿真实验表明了该混合算法的有效性。  相似文献   

15.
针对蚁群系统(ACS)在解决TSP问题上存在易陷入局部最优和收敛速度较慢的问题,提出了一种改进的启发式蚁群算法。在迭代前期赋予伪随机因子较小的阈值,从而使蚂蚁能以较大的概率选择轮盘赌方式完成解的构建,扩大了解的搜索范围;同时通过引入迭代最优蚂蚁进行全局信息素更新,来进一步增加了解的多样性,使算法避免陷入局部最优。在迭代后期随着伪随机因子参数值变化幅度的加快,则用至今最优蚂蚁来取代迭代最优蚂蚁,以促进搜索进程很快的向最优解附近收敛,加快了收敛的速度。实验仿真结果表明改进后的算法在前期能够有效地跳出局部最优,并且在后期能够明显提升收敛速度。  相似文献   

16.
基于新型信息素更新策略的蚁群算法*   总被引:1,自引:0,他引:1  
深入研究了蚁群优化算法(ACO)的路径搜索及参数控制策略,分析了其存在的缺陷。为了提高ACO算法的解题能力,提出一种新型信息素更新策略(PACS),然后将PACS算法与其他蚁群算法分别应用于旅行商问题(TSP)进行仿真实验。仿真结果表明,PACS算法具有优良的全局优化性能,可抑制算法过早收敛于次优解,有效防止了停滞现象,收敛速度也大大加快。  相似文献   

17.
蚁群算法在最优路径规划中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
最优路径规划是道路交通导航系统中很重要的一个功能。将路径规划问题转化为以加权路径网的以路径长度与通行时间的线性组合为目标函数的优化问题,并提出一种改进的蚁群算法应用于该问题,使规划的路径更加符合各种要求。仿真结果表明,该算法能在较短时间内根据不同需求规划出较优的路径,是行之有效的方法。  相似文献   

18.
为了避免蚁群算法陷入停滞状态,研究了信息素的更新规则,并在信息素增量更新式中加入动态调节因子,使得次优路径上的信息素增量较大,其他路径则没有明显的变化,从而有利于蚂蚁在较短的时间内找到更好的解。仿真实验结果及收敛过程表明,改进后的算法解决旅行商问题具有更好的全局搜索能力。  相似文献   

19.
采用蚁群算法求解复杂环境下移动机器人路径规划问题时,会出现运算时间过长、求解精度不高等问题,对此,定义一种新的动态搜索诱导算子以改进蚁群算法性能.重点设计了动态搜索模型,即:在进化初期设定较大阈值以增加种群的多样性;而伴随进化过程,利用衰减模型动态调整为较小阈值以加快收敛速度.TSP测试实验结果表明,该改进蚁群算法不仅能加快收敛速度,而且有效提高了优化解的质量.复杂环境中机器人路径规划问题的求解验证了所提出算法的实际应用效果.  相似文献   

20.
基于自适应路径选择和信息素更新的蚁群算法   总被引:11,自引:3,他引:11  
针对蚁群算法加速收敛和早熟、停滞现象的矛盾,提出了一种基于自适应路径选择和信息素更新的蚁群算法,以求在加速收敛和防止早熟、停滞现象之间取得很好的平衡。该算法根据优化过程中解的分布状况,自适应地调整路径选择策略和信息量更新策略。基于旅行商问题的实验验证了算法比一般蚁群算法具有更好的全局搜索能力、收敛速度和解的多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号