首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 INTRODUCTION The objective of the permanent disposal of radioactive waste is to isolate the radioactive and other toxic particles from the biosphere in such a way that even the release of radionuclides,as a result of not completely excludable migration processes at least in case of scenario analysis,will not lead to the breaking of any dose thresholds at any time in the future. Therefore,the behaviour of the disturbed rock zone (DRZ) in conjunction with geotechnical barriers such as drift or shaft seals ...  相似文献   

2.
In Belgium,the Boom clay was selected as a potential host formation for the disposal of high-level radioactive waste(HLW).To demonstrate the suitability of Boom clay for bearing thermal load induced by the HLW,a large-scale in-situ heater test,called PRACLAY heater test,will be conducted in the underground research laboratory(URL) in Mol.Owing to the limitations of the test(a short period of time compared with that considered in a real repository,different boundary conditions,etc.),the test is designed to simulate,in a conservative way,the most critical state and phenomena that could occur in the host rock.The PRACLAY gallery was excavated at the end of 2007;the heating phase will begin in 2010 and will last for at least 10 years.The PRACLAY gallery itself leaves an opportunity to study the possibilities of sealing a disposal drift in Boom clay and testing the feasibility of hydraulic cut-off of any preferential pathway to the main access gallery through the excavation damage zone(EDZ) and the lining with a seal in a horizontal drift(horizontal seal).Indeed,this is a generic problem for all deep geological disposal facilities for HLW.An annular seal made of compacted swelling bentonite will be installed in the front of the heated part of the PRACLAY gallery for these purposes.This paper provides detailed considerations on the thermo-hydro-mechanical(THM) boundary conditions for the design of the PRACLAY heater test and the seal test with the support of numerical calculations.It is believed that these important items considered in the PRACLAY heater test design also constitute key issues for the repository design.The outcome of the PRACLAY heater test will be an important milestone for the Belgian repository design.  相似文献   

3.
In Germany, all types of radioactive wastes will be disposed of in deep geological repositories. While a repository for low-level radioactive waste (LLW) has recently been licensed, different host rock formations are considered for disposal of heat producing high-level waste (HLW). The latter includes directly disposed spent fuel (SF) and vitrified waste from its reprocessing. Different canisters and disposal concepts are considered for spent fuel disposal, i.e. thick-walled iron casks in horizontal drifts or thin-walled BSK3 steel casks in vertical boreholes. GRS is the leading expert institution in Germany concerning nuclear safety and waste management. For the recent 30 years, GRS has developed and continuously improves a set of computer codes, which allow assessing the performance and the long-term safety of repositories in various host rocks (salt, clay or granite) adopting different technical options. Advanced methods for deterministic as well as probabilistic assessments are available. To characterize the host rocks and backfill/buffer materials and to develop disposal technologies, comprehensive laboratory experiments and a large number of in-situ tests have been performed at GRS’ geo-laboratory and underground research laboratories in different host formations. Thermo-hydro-mechanico-chemical (THMC) processes occurring in the host rocks and engineered barrier systems are numerically simulated. The paper presents an overview of GRS’ work highlighting important results of performance assessment (PA) studies for both the salt and clay options. Also, recent results of in-situ investigations and laboratory studies are presented together with modeling results. Special emphasis is dedicated to the consideration of coupled THM processes which are of relevance in PA.  相似文献   

4.
Clays in radioactive waste disposal   总被引:4,自引:0,他引:4  
Clays and argillites are considered in some countries as possible host rocks for nuclear waste disposal at great depth.The use of compacted swelling clays as engineered barriers is also considered within the framework of the multi-barrier concept.In relation to these concepts,various research programs have been conducted to assess the thermo-hydro-mechanical properties of radioactive waste disposal at great depth.After introducing the concepts of waste isolation developed in Belgium,France and Switzerland,the paper describes the retention and transfer properties of engineered barriers made up of compacted swelling clays in relation to microstructure features.Some features of the thermo-mechanical behaviors of three possible geological barriers,namely Boom clay(Belgium),Callovo-Oxfordian clay(France) and Opalinus clay(Switzerland),are then described,including the retention and transfer properties,volume change behavior,shear strength and thermal aspects.  相似文献   

5.
Underground research laboratories (URLs), including "generic URLs" and "site-specific URLs", are un- derground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW) disposal. In addition to the generic URL and site-specific URL, a concept of "areaspecific URL", or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a "generic URL", but also acts as a "site-specific URL" to some extent. Considering the current situation in China, the most suitable option is to build an "area-specific URL" in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 mav be achieved, but the time left is limited.  相似文献   

6.
A fully coupled thermo-hydro-mechano-chemical(THMC) formulation is described in this paper.Special attention is paid to phenomena likely to be encountered in clay barriers used as engineered barriers in the disposal of nuclear radioactive waste.The types of processes considered in the chemical formulation include hydrolysis,complex formation,oxidation/reduction reactions,acid/base reactions,precipitation/dissolution of minerals and cation exchange.Both kinetics-and equilibrium-controlled reactions are incorporated.The formulation is implemented in a numerical code.An application is presented concerning the performance of a large-scale in-situ heating test simulating high-level radioactive waste repository conditions.  相似文献   

7.
Brittleness is an important parameter controlling the mechanical behavior and failure characteristics of rocks under loading and unloading conditions,such as fracability,cutability,drillability and rockburst proneness.As such,it is of high practical value to correctly evaluate rock brittleness.However,the definition and measurement method of rock brittleness have been very diverse and not yet been standardized.In this paper,the definitions of rock brittleness are firstly reviewed,and several representative definitions of rock brittleness are identified and briefly discussed.The development and role of rock brittleness in different fields of rock engineering are also studied.Eighty brittleness indices publicly available in rock mechanics literature are compiled,and the measurement method,applicability and limitations of some indices are discussed.The results show that(1)the large number of brittleness indices and brittleness definitions is attributed to the different foci on the rock behavior when it breaks;(2)indices developed in one field usually are not directly applicable to other fields;and(3)the term“brittleness”is sometimes misused,and many empirically-obtained brittleness indices,which lack theoretical basis,fail to truly reflect rock brittleness.On the basis of this review,three measurement methods are identified,i.e.(1)elastic deformation before fracture,(2)shape of post-peak stressestrain curves,and(3)methods based on fracture mechanics theory,which have the potential to be further refined and unified to become the standard measurement methods of rock brittleness.It is highly beneficial for the rock mechanics community to develop a robust definition of rock brittleness.This study will undoubtedly provide a comprehensive timely reference for selecting an appropriate brittleness index for their applications,and will also pave the way for the development of a standard definition and measurement method of rock brittleness in the long term.  相似文献   

8.
In many engineering applications,it is important to determine both effective rock properties and the rock behavior which are representative for the problem’s in situ conditions.For this purpose,rock samples are usually extracted from the ground and brought to the laboratory to perform laboratory experiments such as consolidated undrained(CU)triaxial tests.For low permeable geomaterials such as clay shales,core extraction,handling,storage,and specimen preparation can lead to a reduction in the degree of saturation and the effective stress state in the specimen prior to testing remains uncertain.Related changes in structure and the effect of capillary pressure can alter the properties of the specimen and affect the reliability of the test results.A careful testing procedure including back-saturation,consolidation and adequate shearing of the specimen,however,can overcome these issues.Although substantial effort has been devoted during the past decades to the establishment of a testing procedure for low permeable geomaterials,no consistent protocol can be found.With a special focus on CU tests on Opalinus Clay,this study gives a review of the theoretical concepts necessary for planning and validating the results during the individual testing stages(saturation,consolidation,and shearing).The discussed tests protocol is further applied to a series of specimens of Opalinus Clay to illustrate its applicability and highlight the key aspects.  相似文献   

9.
Recently based in the performance of tunnels under seismic movements a good progress is made in the seismic design of tunnels. The majority of problems in the tunnel structures take place in near fault conditions and in the case of great variation of rock properties. Not having a previous experience in the seismic design of the tunnels that pass through tectonic zones with very large heterogeneity (strong rock-soil or very poor rock that behaves like soil) this article presents the general aspects of seismic calculation of tunnels and application in a specific example. The article presents the methods of seismic input modeling, design and particularities of numerical calculations. The geological conditions in which the case study tunnel will be constructed are very common in Albanian territory and represent one of the most difficult cases for the construction of road tunnels. The applied approach for using the longitudinal models for generating time histories of acceleration that can be used as input for transversal models is very simple and will help the designers for the seismic analysis of other tunnels that will be constructed in Albania.  相似文献   

10.
The progress of soft rock mechanics and associated technology in China is basically accompanied by the development of mining engineering and the increasing disasters of large rock deformation during construction of underground engineering.In this regard,Chinese scholars proposed various concepts and classification methods for soft rocks in terms of engineering practices.The large deformation mechanism of engineering soft rocks is to be understood through numerous experiments;and thus a coupled support theory for soft rock roadways is established,followed by the development of a new support material,i.e.the constant resistance and large deformation bolt/anchor with negative Poisson’s ratio effect,and associated control technology.Field results show that large deformation problems related to numbers of engineering cases can be well addressed with this new technology,an effective way for similar soft rock deformation control.  相似文献   

11.
Different artificial intelligence(AI)methods have been applied to various aspects of rock mechanics,but the fact that none of these methods have been used as a standard implies that doubt as to their generality and validity still exists.For this,a literature review of application of AI to the field of rock mechanics is presented.Comprehensive studies of the researches published in the top journals relative to the fields of rock mechanics,computer applications in engineering,and the textbooks were conducted.The performances of the AI methods that have been used in rock mechanics applications were evaluated.The literature review shows that AI methods have successfully been used to solve various problems in the rock mechanics field and they performed better than the traditional empirical,mathematical or statistical methods.However,their practical applicability is still an issue of concern as many of the existing AI models require some level of expertise before they can be used,because they are not in the form of tractable mathematical equations.Thus some advanced AI methods are still yet to be explored.The limited availability of dataset for the AI simulations is also identified as a major problem.The solutions to the identified problems and the possible future research focus were proposed in the study subsequently.  相似文献   

12.
As mines go deeper and get larger,mine designs become more fragile largely due to the response of the rock mass to mining.Ground control and rock support become important levers in the mine construction schedule,production performance,and excavation health.For example,in cave mines,the production footprint together with associated mine infrastructure are significant investments in a modern caving operation.This investment must be protected and maintained to reduce the risk of ground-related production disruptions.It is necessary to preserve the health of these excavations and their maintenance through an effective rock support design.Rock support thus becomes a strategic element in asset management.This article focuses on support design for brittle ground when displacements induced by stress-fracturing consume much of the support’s capacity.It deals with the functionality of the support in deforming ground.Several interlinked concepts are important when assessing excavation health.Designs must not only account for load equilibrium but also for deformation compatibility and capacity consumption.Most importantly,the support’s displacement capacity is being consumed when the rock mass is deformed after support installation.Hence,it is necessary to design for the support capacity remaining at the time when the support is needed.If support capacity can be consumed,it can also be restored by means of preventive support maintenance(PSM).This concept for cost-effective ground control is introduced and illustrated on operational evidence.Furthermore,how design can impact construction costs and schedule are discussed.Support is installed to provide a safe environment and preserve an operationally functional excavation.It also must assure senior management that investments in high quality support and its maintenance will substantially reduce delays and with it,costs.It is demonstrated that the use of‘gabion-like’support systems can achieve these goals.A technical summary of the‘gabion panel’support system design is presented.  相似文献   

13.
Jinping I hydropower station is one of the most challenging projects in China due to its highest arch dam and complex geological conditions for construction.After geological investigation into the dam foundation,a few large-scale weak discontinuities are observed.The rock masses in the left dam foundation are intensively unloaded,approximately to the depth of 150–300 m.These serious geological defects lead to a geological asymmetry on the left and right banks,and thus some major diffculties of dam construction are encountered.In this paper,the influences of geological defects on the project are analyzed,followed by the concepts and methods of treatment design.Based on the analysis,the treatment methods of the weak rock masses and discontinuities are carefully determined,including the concrete cushion,concrete replacement grids,and consolidation grouting.They work together to enhance the strength and integrity of the dam foundation.Evaluations and calibrations through geo-mechanical model tests in combination with feld monitoring results in early impoundment period show that the arch dam and its foundation are roughly stable,suggesting that the treatment designs are reasonable and effective.The proposed treatment methods and concepts in the context can be helpful for similar complex rock projects.  相似文献   

14.
Overhanging rock slopes(steeper than 90°) are typically avoided in rock engineering design, particularly where the scale of the slope exceeds the scale of fracturing present in the rock mass. This paper highlights an integrated approach of designing overhanging rock slopes where the relative dimensions of the slope exceed the scale of fracturing and the rock mass failure needs to be considered rather than kinematic release of individual blocks. The key to the method is a simplified limit equilibrium(LE) tool that was used for the support design and analysis of a multi-faceted overhanging rock slope. The overhanging slopes required complex geometries with constantly changing orientations. The overhanging rock varied in height from 30 m to 66 m. Geomechanical modelling combined with discrete fracture network(DFN)representation of the rock mass was used to validate the rock mass strength assumptions and the failure mechanism assumed in the LE model. The advantage of the simplified LE method is that buttress and support design iterations(along with sensitivity analysis of design parameters) can be completed for various cross-sections along the proposed overhanging rock sections in an efficient manner, compared to the more time-intensive, sophisticated methods that were used for the initial validation. The method described presents the development of this design tool and assumptions made for a specific overhanging rock slope design. Other locations will have different geological conditions that can control the potential behaviour of rock slopes, however, the approach presented can be applied as a general guiding design principle for overhanging rock cut slope.  相似文献   

15.
This study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivityof a compacted expansive clay, with emphasis put on the effect of lime hydration and modification.For this purpose, evolutions of hydraulic conductivity were investigated for both lime-treatedand untreated soil specimens over 7 d after full saturation of the specimens and their microstructureswere observed at the end. Note that for the treated specimen, dry clay powder was mixed with quicklimeprior to compaction in order to study the effect of lime hydration. It is observed that lime hydration andmodification did not affect the intra-aggregate pores but increased the inter-aggregates pores size. Thisincrease gave rise to an increase of hydraulic conductivity. More precisely, the hydraulic conductivity oflime-treated specimen increased progressively during the first 3 d of modification phase and stabilisedduring the next 4 d which correspond to a short period prior to the stabilisation phase. The microstructureobservation showed that stabilisation reactions took place after 7 d. Under the effect of stabilisation,a decreasing hydraulic conductivity can be expected in longer time due to the formation ofcementitious compounds. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.  相似文献   

16.
The most commonly used method for assessing the hydraulic erodibility of rock is Annandale's method.This method is based on a correlation between the erosive force of flowing water and the capacity of rock resistance. This capacity is evaluated using Kirsten's index, which was initially developed to evaluate the excavatability of earth materials. For rocky material, this index is determined according to certain geomechanical factors related to intact rock and rock mass, such as compressive strength of intact rock, rock block size, discontinuity shear strength and relative block structure. To quantify the relative block structure, Kirsten(1982) developed a mathematical expression that accounts for the shape and orientation of the blocks relative to the direction of flow. Kirsten's initial concept for assessing the relative block structure considers that the geological formation is mainly fractured by two joint sets forming an orthogonally fractured system. An adjusted concept is proposed to determine the relative block structure when the fractured system is non-orthogonal where the angle between the planes of the two joint sets is greater or less than 90°. An analysis of the proposed relative block structure rating shows that considering a non-orthogonally fractured system has a significant effect on Kirsten's index and, as a consequence, on the assessment of the hydraulic erodibility of rock.  相似文献   

17.
The material and elastic properties of rocks are utilized for predicting and evaluating hard rock brittleness using artificial neural networks(ANN). Herein hard rock brittleness is defined using Yagiz’method. A predictive model is developed using a comprehensive database compiled from 30 years’ worth of rock tests at the Earth Mechanics Institute(EMI), Colorado School of Mines. The model is sensitive to density, elastic properties, and P- and S-wave velocities. The results show that the model is a better predictor of rock brittleness than conventional destructive strength-test based models and multiple regression techniques. While the findings have direct implications on intact rock, the methodology can be extrapolated to rock mass problems in both tunneling and underground mining where rock brittleness is an important control.  相似文献   

18.
This paper presents the application of a hybrid finite-discrete element method to study blast-induceddamage in circular tunnels. An extensive database of field tests of underground explosions above tunnelsis used for calibrating and validating the proposed numerical method; the numerical results areshown to be in good agreement with published data for large-scale physical experiments. The method isthen used to investigate the influence of rock strength properties on tunnel durability to withstand blastloads. The presented analysis considers blast damage in tunnels excavated through relatively weak(sandstone) and strong (granite) rock materials. It was found that higher rock strength will increase thetunnel resistance to the load on one hand, but decrease attenuation on the other hand. Thus, undercertain conditions, results for weak and strong rock masses are similar. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.  相似文献   

19.
Layered rock mass of significant strength changes for adjacent layers is frequently observed in underground excavation,and dynamic loading is a prevalent scenario generated during excavation.In order to improve the driving efficiency and reduce engineering accidents,dynamic compression characteristics of this kind of rock mass should be understood.The dynamic properties of a layered composite rock mass are investigated through a series of rock tests and numerical simulations.The rock mass is artificially made of various proportions of sand,cement and water to control the distinct strength variations at various composite layers separated by parallel bedding planes.All rock specimens are prefabricated in a specially designed mould and then cut into 50 mm in diameter and 50 mm in height for split Hopkinson pressure bar(SHPB)dynamic compression testing.The test results reveal that increasing strain rate causes the increases of peak strength,σ_p,and the corresponding failure strain,ε_p,while the dynamic elastic modulus,E_d,remains almost unchanged.Interestingly,under the same strain rates,Ed of the composite rock specimen is found to decline first and then increase as the dip angle of bedding plane increases.The obtained rock failure patterns due to various dip angles lead to failure modes that could be classified into four categories from our dynamic tests.Also,a series of counterpart numerical simulations has been undertaken,showing that dynamic responses are in good agreement with those obtained from the SHPB tests.The numerical analysis enables us to Iook into the dynamic characteristics of the composite rock mass subjected to a broader range of strain rates and dip angles than these being tested.  相似文献   

20.
The reasonable design of protective structures to mitigate the hazards from rock fall depends on the knowledge of motion behaviors of falling stones,such as the falling paths,velocities,jump heights and distances.Numerical simulation is an effective way to gain such kind of knowledge,In this paper,the discontinuous deformation analysis (DDA) is applied to rock fall analysis.In order to obtain more reliable results,the following improvements and extensions are made on the original DDA.(1)Solve the problem of block expansions due to rigid body rotation error.(2) Add the function of modeling the drag resistance from air and plants so that the velocities of falling stones obtained by simulations are good enough in agreement with those by experiments in situ.(3)Add the capability to consider energy loss due to block collisions so that the jumping heights and distances obtained by simulations are good enough in agreement with thos by experiments even for the slope with very soft layer on its surface.One of application examples is presented to show that the extended DDA is very effective and useful in rock fall analysis.Therefore,the presented method is expected to be put into wide use in slop stability analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号