首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fully entangled morphology which is usually expected for polyethylene produced using Ziegler–Natta (ZN) catalyst is due to the presence of active sites crowded on catalyst’s support surface as well as within its volume. In this research, the feasibility of producing disentangled, more precisely less entangled, polyethylene using a heterogeneous ZN catalyst supported on magnesium chloride, TiCl4/MgCl2, is introduced. Polymerization was carried out at rather low temperature and pressure, and the nascent polymer was characterized to investigate its entanglement state. The rheological measurements, at small amplitude oscillating in the time sweep mode, exhibited a rather good modulus build-up, demonstrating the nascent polymer in its dis(less)-entangled state. Tape and film samples were prepared from the synthesized polyethylene below its melting point to keep the morphology untapped. The solid-state drawability test was performed on the samples at 100 °C showing its improved drawability. Thus, it could be concluded that the polyethylene synthesized at rather low temperature of 0 °C and longer polymerization time was in disentangled state. Furthermore, a rheometrical analysis in frequency mode was used to estimate the molecular weight and molecular weight distribution of the synthesized polyethylene qualitatively. From X-ray diffraction patterns the existence of a small amount of hexagonal phase in the nascent polymer could be detected, which may be due to the formation of extended chains during polymerization.  相似文献   

2.
Nanofibrous ultrahigh molecular weight polyethylene (UHMWPE) was synthesized via Ziegler–Natta catalyst anchoring on MCM-41 and SBA-15 as supported catalysts, respectively. These supported catalysts exhibited high activity at different temperatures and Al/Ti ratios, and showed different polymerization kinetics behaviors which were well explained by their different pore structures. The ultrahigh molecular weight of polyethylene might be due to the restrained spaces of the supported catalysts mesopores prohibiting the polymer chains transfer reaction. The obtained nanofibrous morphology might be for the high enough stress generated in the mesopores extruding the polymer out to form.  相似文献   

3.
A co-precipitation method was employed to prepare Ni/Al2O3-ZrO2, Co/Al2 O3-ZrO2 and Ni-Co/Al2O3-ZrO2 catalysts. Their properties were characterized by N2 adsorption (BET), thermogravimetric analysis (TGA), temperature-programmed reduction (TPR), temperature-programmed desorption (CO2-TPD), and temperature-programmed surface reaction (CH4-TPSR and CO2-TPSR). Ni-Co/Al2O3-ZrO2 bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO2 adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO2 adsorption sites (C + CO2 = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH4-CO2-TPSR, there were 80.9% and 81.5% higher CH4 and CO2 conversion over Ni-Co/Al2O3-ZrO2 catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al2O3-ZrO2 catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.  相似文献   

4.
The blends of thermoplastic polyurethane and ultra high molecular weight polyethylene (UHMWPE) were prepared by a co‐twin screw extruder. Phase separation morphology of the blends was confirmed by the SEM observations. The incorporation of UHMWPE is detrimental to the mechanical properties of the blends prepared from stiffer TPU, whereas is beneficial to that of TPU with low hardness. The tribological behaviors of neat TPU and its blends were studied by the means of a block‐on‐ring apparatus. It was found that UHMWPE could greatly improve the tribological properties of TPU matrix both under dry sliding and water lubricating conditions due to the excellent self‐lubricating property of the UHMWPE materials and furthermore improve the wear failure limit of TPU. POLYM. COMPOS., 36:897–906, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
6.
The water gas shift (WGS) reaction has been investigated widely in fuel cell technologies due to the potential for high fuel efficiency and lower emissions during the production of pure hydrogen. Industrially, the WGS reaction occurs in one of the following two ways: (a) high-temperature in the range of 310–450°C with Fe-Cr catalyst, (b) low-temperature in the range of 210–250°C with Cu-ZnO-Al2O3. In this study, a mesoporous catalyst was prepared, with a large surface area and uniformity in both pore size and distribution, by using a one-pot synthesis method. The prepared CuO-CeO2-Al2O3 brought high CO conversion (82%), and was suitable for WGS reaction at low temperature (250 °C). This article is dedicated to Professor Chang Kyun Choi for celebrating his retirement from the School of Chemical and Biological Engineering, Seoul National University.  相似文献   

7.
In-situ mechanical process for preparation of the polyvinyl alcohol (PVA) coated nano-B4C powder was investigated by using a high-energy ball mill. The produced PVA coat on the surface of nano-B4C particles was observed by x-ray diffraction (XRD) and confirmed by TEM images. The average particle size of the produced nano-B4C/PVA particles was in the range of several tens to hundreds of nanometers depending on the milling conditions. The polymer composites were fabricated by hot pressing ultra high molecular weight polyethylene (UHMWPE) powder mixed with nano-B4C/PAV and micro-B4C powders, respectively. Nano-B4C/PVA dispersed UHMWPE shows slightly lower crystallinity and stiffness than micro-B4C dispersed UHMWPE based on differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) evaluations.  相似文献   

8.
Solid solutions in the MeLn2S4?x (mol %) MeS (Ln2S3) (Me = Ca, Ba; Ln = Sm, Gd) systems are prepared. The regions of solid solution formation are determined, the unit cell parameters of the crystal lattice are calculated, the total conductivity is investigated, and the activation energies for electrical conduction are calculated for samples with different prehistories. The electrolytic properties of phases based on calcium and barium thiolanthanates are studied, and the mechanism of defect formation is proposed.  相似文献   

9.
The highly ordered mesoporous CoFe2O4 and CuFe2O4 with crystalline walls can be synthesized by hard template with using mesoporous silica SBA-15 as hard template and using ferric nitrate, cobalt nitrate, and copper nitrate as metal precursors. These new mesoporous materials above have high surface areas, narrow pore size distribution, and large pore volumes, which are believed to be valuable for the potential application in the field of sensors, catalysis, message recording, magnetics, and biology. This work provides a method to fabricate the highly ordered mesoporous materials composed of multi-metal oxides with crystalline walls. The development of such versatile approach is of great significance in practical application. It can be envisaged that this established method is significantly expandable to the controlled synthesis of the mesoporous functional materials with diverse compositions.  相似文献   

10.
A kind of new catalyst—carbonaceous catalyst—for CH4-CO2 reformation has been developed in our laboratory. The effect of both oxygen-bearing functional group such as phenolic hydroxyl, carbonyl, carboxyl, and lactonic, and ash such as Fe2O3, Na2CO3, and K2CO3 in the carbonaceous catalyst on the CH4-CO2 reforming has been investigated with a fixed-bed reactor. It has been found that the carbonaceous catalyst is an efficient catalyst on CO2-CH4 reforming. With the decrease of oxygen-bearing functional group, the catalytic activity of carbonaceous catalyst decreases quickly. The oxygen-bearing functional groups play a significant role in the carbonaceous-catalyzed CO2-CH4 reforming; the ash components in carbonaceous catalyst also have an important influence on the CO2-CH4 reforming. Fe2O3, Na2CO3, and K2CO3 in the ash can catalyze the CO2-CH4 reforming reaction; CaO has little effect on CO2-CH4 reforming reaction. CaO can catalyze the gasification between carbonaceous catalyst and CO2; Al2O3 and MgO inhibit the CO2-CH4 reforming.  相似文献   

11.
The novel half-titanocene catalyst bearing reactive functional amino group, η5-pentamethylcyclopentadienyltri(p-amino-phenoxyl) titanium [CpTi(p-OC6H4NH2)3], was easily synthesized by the reaction of η5-pentamethylcyclopentadienyltrichloride titanium (CpTiCl3) with p-amino phenol in the presence of triethyl amine (NEt3). CpTi(p-OC6H4NH2)3 covalently anchored on MgCl2/AlEtn(OEt)3-n support obtained from the reaction of triethylaluminium (AlEt3) with the adduct of magnesium chloride (MgCl2) and ethanol (EtOH), has been investigated and used to catalyze syndiospecific polymerization of styrene. Influences of the support structure, cocatalyst, and the molar ratio of Al in methylaluminoxane (MAO) and Ti (AlMAO/Ti) on catalytic activity, syndiotacticity and molecular weight of the resultant polystyrene were investigated. Compared with the corresponding CpTi(p-OC6H4NH2)3 homogeneous catalyst, a considerable increase in activity and molecular weight of syndiotactic polystyrene (sPS) was observed for the CpTi(p-OC6H4NH2)3-MgCl2/AlEtn(OEt)3-n supported catalyst even at a relatively low AlMAO/Ti ratio of 50, and the kinetics of polymerization was stable during the reaction process.  相似文献   

12.
WO3 and bi-layer WO3/TiO2 coatings of different catalyst loadings were electrosynthesized on stainless steel 304 (SS) substrates from acidic aqueous solutions by single-step and consecutive steps potentiostatic cathodic deposition. The resulting WO3/SS and TiO2/WO3/SS photoelectrodes were screened for their photoresponse under ultraviolet (UV) and visible light illumination by photovoltammetry and photoamperometry in sulphate solutions, in the absence and presence of 4-chlorophenol (4-CP). They were also evaluated for bulk photo-oxidation of 4-CP under constant potential, in the voltage range determined on the basis of the photovoltammetric tests. The optimal weight ratio between TiO2 and WO3 was also established, ensuring the best performance of these photoelectrodes for the photooxidation of 4-CP under UV and visible light irradiation.  相似文献   

13.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

14.
Powders of nanosized particles of individual and mixed lanthanum and lutetium orthophosphates are synthesized. The grain growth process is studied in the temperature range of 200–1100°C. Temperature and concentration regions of existence of the solid solutions based on hexagonal and monoclinic forms of LaPO4 as well as on tetragonal LuPO4 are determined.  相似文献   

15.
A new green chemical route was designed in this paper for the synthesis of high-silica EU-1 molecular sieve in TEAOH–SiO2–Al2O3–HMBr2–H2O system in which tetraethylammonium hydroxide (TEAOH) substituted for sodium hydroxide (NaOH) as an alkali source. The physicochemical properties of the synthesized samples characterized by such means as X-ray powder diffraction (XRD), electrophoresis apparatus, precise pH meter, scanning electron microscope, Fourier infrared spectrometer (FT-IR), thermo gravimetric analyzer (TG) and temperature programmed desorption (NH3-TPD). The research results showed that the SiO2/Al2O3 ratio of EU-1 molecular sieve could reach 706 with TEAOH as an alkali source. The SiO2/Al2O3 ratio of the product was improved greatly to 1046 with the template agent increasing. The new synthetic route has also significantly expanded the synthetic phase region. The absolute value of zeta potential of the TEAOH sol system was obviously higher than that of the NaOH sol system, indicating the thermodynamic stability of the former sol system was higher and better for the synthesis of pure high-silica EU-1 molecular sieve. The FT-IR spectra and TG/DTG diagrams of products indicated that TEA+ occluded in the final products could balance electronegative framework. The amount of strong, weak and the total acidity reduced with the increase of SiO2/Al2O3 ratio. The catalytic results of methanol-to-hydrocarbon demonstrated that the molecular sieve prepared by the new method has better catalytic performance.  相似文献   

16.
Based on a low-temperature route, monodispersed CoFe2O4 microspheres (MSs) were fabricated through aggregation of primary nanoparticles. The microstructural and magnetic characteristics of the as-prepared MSs were characterized by X-ray diffraction/photoelectron spectroscopy, scanning/transmitting electron microscopy, and vibrating sample magnetometer. The results indicate that the diameters of CoFe2O4 MSs with narrow size distribution can be tuned from over 200 to ~330 nm. Magnetic measurements reveal these MSs exhibit superparamagnetic behavior at room temperature with high saturation magnetization. Furthermore, the mechanism of formation of the monodispersed CoFe2O4 MSs was discussed on the basis of time-dependent experiments, in which hydrophilic PVP plays a crucial role.  相似文献   

17.
This paper presents the direct synthesis of super-low SiO2/Al2O3 ratio zeolite beta molecular sieve through a novel route, by which some of aluminium species are added during crystaling process. The IR results show that with the increase of aluminium content in the framework, the frequency of the band in the range of framework vibration (1060–1090 cm−1) shifts to the lower wave-number; the BET surface-area decreases and the basicity of zeolite becomes stronger. In a second step, new adsorbents were obtained by solid-state ion exchanging zeolite beta with Cu(I), Ag(I) cations. The deep-desulfurization (sulfur levels of <1 ppmw) tests were performed using fixed-bed adsorption technique, the sulfur content of the treated and untreated gasoline was analyzed by microcoulometry. The experimental results show that the desulfurization performance of sorbents decreases in order: Cu(I)beta > Ag(I)beta > Na-beta. The best sorbent, Cu(I)beta, has breakthrough adsorption capacities of 0.236 mmolS/g of sorbent for model gasoline.  相似文献   

18.
Reactor modeling for the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst was addressed in the present study. The catalyst loading part was designed to be thicker than the inlet and outlet parts to reduce the rates of side reactions in the gas phase, and the optimal aspect ratio (L to D ratio) for no pressure drop and minimum side reactions was determined in experimental studies. Experiments were also conducted under a variety of operating conditions such as gas hourly space velocity (GHSV), CH4/O2 ratio and reaction temperature, and partial least-squares model was applied to predict the performance of the reactor. The validity of the developed model was corroborated by the comparison with experimental data, and normalized parametric sensitivity analysis was carried out. Finally, the genetic algorithm (GA) was applied to determine the optimal conditions for maximum production of ethane and ethylene.  相似文献   

19.
Spherical carbon (SC) with a diameter of ca. 9 μm was synthesized by a hydrothermal method using sucrose as a carbon precursor. The spherical carbon was then modified to have a positive charge, and thus, to provide a site for the immobilization of H5PMo10V2O40 (PMo10V2) catalyst. The PMo10V2 catalyst was immobilized on the surface-modified spherical carbon by taking advantage of the overall negative charge of [PMo10V2O40]5−. The PMo10V2 catalyst immobilized on the spherical carbon (PMo10V2/SC) was applied to the vapor-phase 2-propanol conversion reaction. In the catalytic reaction, the PMo10V2/SC catalyst showed a higher 2-propanol conversion than the unsupported PMo10V2 catalyst. Furthermore, the PMo10V2/SC catalyst showed enhanced oxidation catalytic activity (formation of acetone) and the suppressed acid catalytic activity (formation of propylene and isopropyl ether) compared to the unsupported PMo10V2 catalyst. The enhanced oxidation activity of PMo10V2/SC catalyst was due to the fine dispersion of [PMo10V2O40]5− on the spherical carbon formed via chemical immobilization.  相似文献   

20.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号