首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we proposed a two-step heating schedule involving pulse electric current sintering (PECS), a kind of pressure assisted vacuum sintering, and subsequent post-heat treatment in air to fabricate porous alumina support, using commercially available alumina and carbon powders [J. Mater. Res. 18 (2003) 751]. During pressure assisted vacuum sintering, Al2O3–C system of low porosity was obtained and in second stage, i.e. during post-heat treatment in air, carbon particles present in the Al2O3–C system burnt out to form highly porous Al2O3 support. Following our previous brief study, the effects of sintering parameters such as temperature, pressure, and heating rate on the properties of the porous alumina were investigated. The porosity varied between 28 and 38% depending on the sintering parameters. As desired, the pore size distribution did not change with post-heat treatment temperature and hence the mechanical properties as well. It was concurred from this present study that the sintering parameters of PECS greatly influenced pore characteristics and other properties of porous compacts. We admit that the initial composition ratio of powder mixture (Al2O3:C) also plays important role on properties such as porosity, pore size, etc. which is beyond the scope of this present study.  相似文献   

2.
Oxidation bonding of porous silicon carbide ceramics   总被引:10,自引:0,他引:10  
A oxidation-bonding technique was successfully developed to fabricate porous SiC ceramics using the powder mixtures of SiC, Al2O3 and C. The oxidation-bonding behavior, mechanical strength, open porosity and pore-size distribution were investigated as a function of Al2O3 content as well as graphite particle size and volume fraction. The pore size and porosity were observed to be strongly dependent on graphite particle size and volume fraction. In contrast, the degree of SiC oxidation was not significantly affected by graphite particle size and volume fraction. In addition, it was found that the fracture strength of oxidation-bonded SiC ceramics at a given porosity decreases with the pore size but increases with the neck size. Due to the enhancement of neck growth by the additions of Al2O3, a high strength of 39.6 MPa was achieved at a porosity of 36.4%. Moreover, such a porous ceramic exhibited an excellent oxidation resistance and a high Weibull modulus.  相似文献   

3.
Physical properties of advanced ceramics are influenced by impurities produced in the forming process. The forming compacts produced by slip casting using gypsum molds contain calcium and sulfur in green bodies. Therefore, a porous Al2O3-glass mold was produced and slip casting was performed in the present study. Porous Al2O3 ceramics as casting molds were examined in comparison with gypsum mold from viewpoints of free energy for wettability and rate of filter cake buildup. The sintered compact of Al2O3 produced by slip casting using the porous Al2O3-glass mold was compared with those using the gypsum mold. Transmittance of the sintered Al2O3 compacts using the porous Al2O3-glass molds was increased in comparison with that using the gypsum mold.  相似文献   

4.
3D interconnective porous alumina ceramics via direct protein foaming   总被引:1,自引:0,他引:1  
3D interconnective porous Al2O3 ceramics were produced using a direct protein forming method and evaluated by measuring the density, porosity and pore size distribution, and mechanical properties. Two proteins were used including egg white protein and whey protein isolate. In comparison to the whey protein isolate foamed Al2O3 ceramics, the egg white protein foamed Al2O3 ceramics had a higher compressive strength and narrower pore size distribution. The differences are attributed to the different foaming stability of two proteins.  相似文献   

5.
Nanoscaled Al2O3-powders can be employed for diffusion bonding of alumina ceramics. In order to accomplish bonding of the ceramics, Al2O3-nanopowder with a median particle size of 14 nm in diameter is sandwiched between two commercial microcrystalline corund discs, followed by uniaxially hot compressing of the assembly in vacuum at 80 MPa and 1100 °C for 2 h. Scanning electron microscopic investigations reveal a nanocrystalline structure of the joint with a mean grain size of about 50 nm in diameter and extensive consolidation of the powder without substantial shrinkage void formation. Microhardness measurements across the interface yield a value of 200 HV. In order to achieve complete densification and strength enhancement of the joint material, the sample is subsequently sintered at 1500 °C and 1600 °C for several hours in air. It was found that the hardness of the joint depends strongly on the porosity content and/or grain size and that a hardness of 1700 HV is obtained when both a mean particle size of about 1 μm and complete densification of the joint is achieved. The results show for the first time that Al2O3-nanopowders are suitable for diffusion bonding of alumina ceramics. Possible mechanisms are discussed.  相似文献   

6.
An apparatus was developed to evaluate the gas permeability behavior of mullite (3Al2O3·2SiO2)-bonded porous silicon carbide (SiC) ceramics at room temperature. The permeability was calculated according to Forchheimer’s equation for the compressible gas. It was found that the sintering temperature and graphite (pore former) addition during the fabrication of the porous ceramics affect the permeability extremely by varying the texture of porous ceramics such as the open porosity, pore size distribution and tortuosity of pore channels. The increased sintering temperature results in a decreased Darcian (viscous) permeability but an increased non-Darcian (inertial) permeability. However, more graphite additions lead to the larger Darcian and non-Darcian permeability.  相似文献   

7.
The effect of grain boundary phase on contact damage behavior is investigated in alumina ceramics. Four types of aluminas doped with MgO, anorthite (CaO·Al2O3·2SiO2), silica, and with both MgO and anorthite are prepared such that they have similar average grain size by adjusting sintering conditions. MgO-doped alumina composed of equiaxed grains shows brittle fracture behavior, and anorthite-doped alumina composed of elongated grains shows a quasi-plastic response under Hertzian sphere indentation. The co-doped alumina with MgO and anorthite, however, is damage tolerant even with its rounded grains, while silica-doped alumina with similar grain size and shape to anorthite-doped alumina shows abrupt strength degradation with low critical load for cone cracking. The damage behavior is discussed from the viewpoint of residual stress induced by thermal expansion mismatch between the grains and grain boundary phases. The damage tolerant behavior of alumina ceramics is significantly affected by the composition of grain boundary phase.  相似文献   

8.
Since hydroxyapatite has excellent biocompatibility and bone bonding ability, porous hydroxyapatite ceramics have been intensively studied. However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared by ceramic slurry infiltration of expanded polystyrene bead compacts, followed by firing at 1500°C. Then slurry of hydroxyapatite-borosilicate glass mixed powder was used to coat the porous ceramics, followed by firing at 1200°C. The porous structures without the coating had high porosities of 51–69%, high pore interconnectivity, and sufficiently large pore window sizes (300–500 μm). The porous ceramics had compressive strengths of 5·3∼36·8 MPa, favourably comparable to the mechanical properties of cancellous bones. In addition, porous hydroxyapatite surface was formed on the top of the composite coating, whereas a borosilicate glass layer was found on the interface. Thus, porous zirconia-based ceramics were modified with a bioactive composite coating for biomedical applications.  相似文献   

9.
A novel method was introduced to prepare open-cell Al2O3–ZrO2 ceramic foams with controlled cell structure. This method used epispastic polystyrene (EPS) spheres to array ordered templates and centrifugal slip casting in the interstitial spaces of the EPS template to obtain cell struts with high packing density. Aqueous Al2O3–ZrO2 slurries with up to 50 vol.% solid contents were prepared and centrifuged at acceleration of 2,860g. The effect of the solid contents of slurries on segregation phenomena of different particles and green compact uniformity were investigated. In multiphase system, the settling velocities of Al2O3 and ZrO2 particles were calculated. Theory analysis and calculated results both indicated segregation phenomenon was hindered for slurries with 50 vol.% solid content. The cell struts of sintered products had high green density (61.5%TD), sintered density (99.1%TD) and homogeneous microstructures after sintered at 1,550 °C for 2 h. The cell size and porosity of Al2O3–ZrO2 ceramic foams can be adjusted by changing the size of EPS spheres and the load applied on them during packing, respectively. When the porosity increased from 75.3% to 83.1%, the compressive strength decreases from 3.82 to 2.07 MPa.  相似文献   

10.
SiC reticulated porous ceramics (SiC RPCs) was fabricated with polymer replicas method by using MgO–Al2O3–SiO2 additives as sintering aids at 1,000∼1,450 °C. The MgO–Al2O3–SiO2 additives were from alumina, kaolin and Talc powders. By employing various experimental techniques, zeta potential, viscosity and rheological measurements, the dispersion of mixed powders (SiC, Al2O3, talc and kaolin) in aqueous media using silica sol as a binder was studied. The pH value of the optimum dispersion was found to be around pH 10 for the mixtures. The optimum condition of the slurry suitable for impregnating the polymeric sponge was obtained. At the same time, the influence of the sintering temperature and holding time on the properties of SiC RPCs was investigated. According to the properties of SiC RPCs, the optimal sintering temperature was chosen at 1,300 °C, which was lower than that with Al2O3–SiO2 additives as sintering aids.  相似文献   

11.
Cordierite-bonded porous SiC ceramics were prepared by air sintering of cordierite sol infiltrated porous powder compacts of SiC with graphite and polymer microbeads as pore-forming agents. The effect of sintering temperature, type of pore former and its morphology on microstructure, mechanical strength, phase composition, porosity and pore size distribution pattern of porous SiC ceramics were investigated. Depending on type and size of pore former, the average pore diameter, porosities and flexural strength of the final ceramics sintered at 1400 °C varied in the range of ~ 7.6 to 10.1 µm, 34–49 vol% and 34–15 MPa, respectively. The strength–porosity relationship was explained by the minimum solid area (MSA) model. After mechanical stress was applied to the porous SiC ceramics, microstructures of fracture surface appeared without affecting dense struts of thickness ~ 2 to 10 µm showing restriction in crack propagation through interfacial zone of SiC particles. The effect of corrosion on oxide bond phases was investigated in strong acid and basic salt medium at 90 °C. The residual mechanical strength, SEM micrographs and EDX analyses were conducted on the corroded samples and explained the corrosion mechanisms.  相似文献   

12.
A novel binary porous composite nano-carbon networks (NCNs)/alumina, which is denoted as electrically conductive porous alumina (CPA), was structurally modified by carbon nanotubes (CNT) pre-treated with mixed concentrated acids at 60 °C for 6 h in this study. This conductive ceramics (CCs) was fabricated by combination of gelcasting and high temperature reductive sintering (HTRS) in novel atmosphere. CNT pre-treatment leading to the increased hydrophilicity makes it possible to make uniformly dispersed CNT/alumina slurry. And by HTRS in Ar at 1700 °C for 2 h, well-gelled polymer net-paths in green body prepared by gelcasting technology were totally converted to nano-carbon networks (NCNs) without destruction of CNT. NCN with graphitic crystal structure was evaluated by Raman spectroscopy in sintered ceramic body. Moreover, comparing with as-received CNT, the decreased surface defect of detected composite also supported the further graphitization of CNT via HTRS in Ar instead of burning out. With the aid of field-emission scanning electronic microscopy (FE-SEM) observation, the increased alumina grains in sintered ceramic body CNT/NCN/alumina was valid. Moreover, it was demonstrated that there were three components in this composite, which is carbon filler with two different forms (CNT and NCN) and alumina matrix. And these three components CNT covered with Al2O3 particles (Al2O3/CNT), NCN and alumina grains (alumina) co-exist in four different situations as follows: (a) Al2O3/CNT–alumina co-junction, (b) Al2O3/CNT–NCN co-junction, (c) Al2O3/CNT–alumina–NCN and (d) Al2O3/CNT mesh between alumina boundaries. Furthermore, by comparing with binary composite NCN/alumina (CPA), the increased flexural strength of ternary composite CNT/NCN/alumina (CNT/CPA) up to 38 MPa was attributed to the reinforcement CNT acting as elastic bridge in composite.  相似文献   

13.
Compositions in CaO-Al2O3 system have been prepared by gel-to-crystallite conversion method. Reactive powders of 1 : 2, 1 : 1, 2 : 1 and 3 : 1 of CaO and2O3 compositions were obtained by calcining the product at 800–1200°C. Fine grained powders were used as refractory cement for joining alumina ceramics. An optimum temperature of 1450°C for 4 h produced joints of satisfactory strength. The microstructure and X-ray phase analysis of the fractured joint surface clearly indicate reactive wetting of the alumina ceramics. This wetting enhances the joining of alumina substrates and can be attributed to the formation of Ca12Al14O33 liquid phase. The results are explained by using CaO-Al2O3 phase diagram.  相似文献   

14.
A powder compact of α-SiC and α-Al2O3 was infiltrated with a liquid precursor of SiO2, which on subsequent heat treatment at 1500 °C produced a mullite bonded porous SiC ceramics. Results showed that infiltration rate could be estimated by using weight gain measurements and theoretical analysis. The bond phase was composed of needle-shaped mullite which was observed to be grown from a siliceous melt formed during the process of oxide bonding. The porous SiC ceramics exhibited a density and porosity of 2 g cm−3 and 30 vol%, respectively, and also a pore size distribution in a range of 2–15 μm with an average pore size of 5 μm. No appreciable degradation of room temperature flexural strength (51 MPa) was observed at high temperatures (1100 °C).  相似文献   

15.
Preparation of zirconia dental crowns via electrophoretic deposition   总被引:1,自引:0,他引:1  
Tetragonally stabilized, polycrystalline zirconia (TZP) is an interesting material for dental applications due to the tooth-like appearance, biocompatibility and, compared with other advanced ceramics, high bending and tensile strength. At present fully sintered TZP dental crowns or bridges can only be made via CAD-CAM supported mechanical milling processes, but the high costs and long processing times are disadvantageous. In contrast to this process a less expensive preparation is possible via near net-shape electrophoretic shaping from aqueous suspensions and consecutive sintering. As the deposition rate for electrophoretic deposition (EPD) is independent of particle size, bimodal starting powders can be used for optimizing the green density of the compact. Thus the shrinkage during sintering can be minimized. Furthermore, the pore structure can be controlled.In this paper the preparation of dental crowns via EPD is shown. With a combination of commercially available micron-sized Ce-stabilized zirconia (Ce-ZrO2) powder, nanosized zirconia powder (nano-ZrO2), and a submicron alumina powder (Al2O3) compacts with relative green densities up to 78% could be achieved. These compacts could be completely sintered at 1,600 °C with a linear shrinkage of less than 9%.  相似文献   

16.
Ultrapure, nanosized alumina (Al2O3) powders are highly required for high performance Al2O3 ceramics. However, the synthesis of the powders via an efficient and low-cost way is still a challenge. In the present research, we treated commercial γ-Al2O3 powders via hydrothermal treatment combined with CO2 pretreatment technique. The effect of hydrothermal pressure on the crystal phase, particle size and purity of the treated powders were investigated. In addition, the effect of CO2 pretreatment on the purification of the powders was discussed. Commercial γ-Al2O3 powders are fully converted to boehmite (AlOOH, a derived form of Al2O3) at a hydrothermal pressure of 3.5 MPa. The boehmite powders reduce to the minimum particle size of 50–100 nm after being hydrothermal treated at 3.5 MPa. CO2 pretreatment has been found to be very efficient in the purification of the powders. The Al2O3 content of the powders after being CO2 pretreated at 1 MPa could reach up to 99.9410% which is much larger than that of commercial γ-Al2O3 powders (99.5096%). The as-received ultrapure, nanosized boehmite powders are promised raw materials for high performance Al2O3 ceramics.  相似文献   

17.
Fluorescence microprobe spectroscopy was used to characterize the stress fields that develop within an interpenetrating Al–Al2O3 composite resulting from both the thermal expansion mismatch during sample processing, and from an external applied load. The 30 vol% Al–70 vol% Al2O3 composite that was investigated had an aluminum and alumina phase feature size of 50–100 μm. The residual thermal compressive stress measured in the alumina was ∼40–340 MPa. The effect of varying the metal ligament size on the residual stress distribution is discussed. Additionally, the application of an external load caused a non-uniform stress distribution to develop within the alumina regions around the crack-tip, which was attributed to microstructure inhomogeneities. The crack was further extended and the influence of the stress distribution within the alumina regions on the crack extension direction is briefly discussed.  相似文献   

18.
Undoped and Nd- or Yb-doped laser-grade yttrium aluminum garnet and (Y,La)2O3 ceramics with a transmittance above 80% in the 1-μm lasing region have been prepared by solid-state reactions using nonagglomerated Y2O3 and Al2O3 nanopowders. The Y2O3 nanopowders were prepared via laser evaporation, chemical precipitation from urea solutions, and grinding of commercially available Y2O3 in a purposedesigned laboratory-scale attritor at stirrer rotation rates of up to 1500 rpm. The YAG ceramics were prepared using commercially available Al2O3. After grinding, all of the powders had a particle size on the order of a hundred nanometers. Green compacts produced from the nanopowders were sintered in a vacuum furnace between 1615 and 1750°C to give highly transparent ceramic samples.  相似文献   

19.
《Materials Letters》2005,59(19-20):2601-2604
Porous sialon ceramics have been cost-effectively prepared by pressureless sintering from a mixture of elongated SHS β-sialon powders with an α-sialon precursor composition composed of α-Si3N4, AlN, Y2O3 and Al2O3. The obtained porous sialon ceramics exhibited low shrinkage and homogeneous pore size distribution. The results of X-ray diffraction and scanning electron microscopy showed that a uniform microstructure with elongated and intermingled β-SiAlON grains, which were strongly connected by α-SiAlON phase, has been obtained.  相似文献   

20.
Since hydroxyapatite has excellent biocompatibility and bone bonding ability, porous hydroxyapatite ceramics have been intensively studied. However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared by ceramic slurry infiltration of expanded polystyrene bead compacts, followed by firing at 1500 °C. Then a slurry of hydroxyapatite–borosilicate glass mixed powder was used to coat the porous ceramics, followed by firing at 1200 °C. The porous structures without the coating had high porosities of 51% to 69%, a high pore interconnectivity, and sufficiently large pore window sizes (300 μm–500 μm). The porous ceramics had compressive strengths of 5.3˜36.8 MPa and Young's moduli of 0.30˜2.25 GPa, favorably comparable to the mechanical properties of cancellous bones. In addition, porous hydroxyapatite surface was formed on the top of the composite coating, whereas a borosilicate glass layer was found on the interface. Thus, porous zirconia-based ceramics were modified with a bioactive composite coating for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号