首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
张粤  王宏杰  杨林  陈鸿  曹建新 《硅酸盐通报》2022,41(8):2836-2843
选取四种不同粒径磷石膏,分别与机制砂、水泥及外加剂混合制备了湿拌砂浆,考察了磷石膏粒径对砂浆工作性及力学性能的影响,并通过XRD、TG-DSC、MIP以及SEM测试探究了磷石膏粒径对湿拌砂浆水化产物及微观结构的影响机理。结果表明,随着磷石膏粒径增大,湿拌砂浆工作性及力学性能呈先增大后减小的趋势,当掺入30%(质量分数)粒径为53~106 μm的磷石膏时,湿拌砂浆稠度损失19%,保水率为90%,28 d抗压强度为10.7 MPa,14 d拉伸黏结强度为0.25 MPa,可满足抗压强度大于10 MPa的技术指标要求。随着磷石膏粒径增大,磷石膏中的共晶磷含量减少,水泥水化过程受抑制程度减弱,砂浆中水化硅酸钙(C-S-H)生成量增多,且在远离CaSO4·2H2O颗粒的区域有大量C-S-H出现。然而,砂浆硬化体的孔体积却呈先减小后增大的趋势,当掺入30%(质量分数)粒径为53~106 μm的磷石膏时,砂浆的孔体积最小,仅为0.130 9 mL/g。磷石膏粒径范围适宜控制在53~106 μm,此时湿拌砂浆具有良好的工作性及力学性能。  相似文献   

2.
本文研究了钢渣、矿渣、石膏和粉煤灰对钢渣水泥抹面砂浆性能的影响。结果表明:钢渣水泥复合材料抗压强度和抗折强度随着钢渣掺量的增加而呈减小的趋势;矿渣(20%)复配改性钢渣水泥复合材料,28d最佳抗压强度和抗折强度(49.2MPa和6.8MPa)分别较未掺矿渣的提高了3.3%和16.2%;当脱硫石膏掺量在3%时,可提高钢渣-水泥-矿渣力学性能;当增塑剂掺量控制在0.4%,水泥抹灰砂浆施工性能较好,砂率在1:4时,钢渣水泥抹灰砂浆28d抗压强度可达到13.5MPa(满足M10等级要求),当砂率为1:5时,钢渣水泥抹灰砂浆28d抗压强度可达到7.5MPa(满足M5等级要求)。  相似文献   

3.
研究了硅酸盐水泥掺量变化对脱硫石膏基砂浆的稠度、体积密度、抗压强度、抗折强度、软化系数、黏结拉伸强度、干燥收缩性能等物理力学性能的影响规律.结果表明,硅酸盐水泥能显著提高脱硫石膏基砂浆稠度,增大流动性,使得新拌砂浆体积密度和硬化砂浆体积密度略微增大;显著提高脱硫石膏基砂浆的抗压强度、抗折强度和软化系数,尤其是后期强度;能明显提高黏结拉伸强度,显著降低干燥收缩率,改善干燥收缩性能,甚至使得砂浆早期具有微膨胀特点;硅酸盐水泥在脱硫石膏基中的掺量宜控制在20%以内.  相似文献   

4.
冯洋  杨林  曹建新  王炳棋  陈龙 《硅酸盐通报》2020,39(9):2891-2897
采用磷石膏煅烧改性成的无水磷石膏(AP)、α型高强石膏(α-HH)、石英砂、外加剂等为原料制备磷石膏基自流平砂浆,分析探讨了煅烧温度、α型高强石膏掺量、胶砂比以及外加剂掺量对样品凝结时间、力学强度等性能指标的影响.结果 表明:磷石膏经500℃煅烧后,28 d抗压强度为13.6 MPa;增大α型高强石膏掺量有利于提高无水磷石膏力学强度;减小胶砂比能改善砂浆流动性能.采用42%无水磷石膏、28%α型高强石膏、30%石英砂、0.01% PE、0.2% MSF及0.1% HPMC配制的磷石膏基自流平砂浆,其性能指标满足JC/T 1023-2007《石膏基自流平砂浆》的要求.  相似文献   

5.
采用磷建筑石膏(PBG)、柠檬酸钠(SC)、甲基纤维素(MC)及玻化微珠为原料制备轻质抹灰石膏,并系统地分析了外加剂、轻集料对砂浆性能的影响机制。结果表明,柠檬酸钠可增大砂浆的流动性能, 当掺量为0.8%(掺量均为质量分数)时,样品抗压强度达到16.3 MPa。然而,甲基纤维素降低了砂浆的流动性能,当掺量为0.40%时,样品抗压强度仅为11.3 MPa。玻化微珠会降低砂浆密度及流动性,缩短凝结时间,增大了保水率及硬化体拉伸粘结强度。采用95%磷建筑石膏、5.0%玻化微珠并按磷建筑石膏质量外掺1.0%SC、0.20%MC配制的砂浆样品性能可达到GB/T 28627—2012《抹灰石膏》中的轻质抹灰石膏性能的要求。随着SC掺量的增加,轻质抹灰石膏水化产物二水石膏的形貌向长条、针状转变,晶体结晶度降低、搭接程度增大,从而使得抗折强度增大,抗压及拉伸粘结强度减小;随着MC掺量的增加,轻质抹灰石膏水化产物二水石膏的形貌变成厚板状,晶体间搭接程度及结晶度增大,使得硬化强度增大。  相似文献   

6.
研究了不同石膏掺量对硫铝酸盐水泥、普通硅酸盐水泥、石膏组成的三元胶凝体系制备的水泥基自流平砂浆工作性能、力学性能、收缩性能、水化产物、水化热的影响.结果 表明:石膏掺量基本不会影响自流平砂浆的流动度和凝结时间,石膏掺量≤40 g/kg时,自流平砂浆各龄期的抗折强度、抗压强度和28 d拉伸粘结强度随着石膏掺量的增加而增大,但石膏掺量≥50 g/kg时自流平砂浆因膨胀开裂各龄期的抗折强度、抗压强度和28 d拉伸粘结强度随着石膏掺量增加而降低.随着石膏掺量的增加自流平砂浆各龄期的收缩值由负变正,即由收缩变为膨胀.24h之前三元胶凝体系的水化放热速率及水化放热量均随着石膏掺量的增加而增大,当石膏掺量为60 g/kg时,因膨胀使得容器胀裂,三元胶凝体系的水化放热量在30 h出现最高峰后逐渐减小.  相似文献   

7.
采用磷建筑石膏、P·O 42.5水泥、粉煤灰、矿粉、石粉及外加剂为原材料制备高强耐水型磷建筑石膏基无砂自流平砂浆。通过正交试验确定砂浆中胶凝材料的最优掺量,研究减水剂和可再分散性乳胶粉对砂浆性能的影响,并采用XRD及SEM对砂浆进行微观分析。结果表明,当磷建筑石膏、水泥、粉煤灰、矿粉及石粉质量比为73∶5∶5∶15∶2时,砂浆综合性能最优,28 d绝干抗压强度为33.0 MPa,软化系数为0.774。减水剂能够提高砂浆30 min的流动度、力学性能及耐水性能,但当掺量为0.30%(质量分数)时,会降低砂浆的后期强度。可再分散性乳胶粉会降低砂浆的流动性能及力学性能,但能提升砂浆的耐水性能。制备的磷建筑石膏基无砂自流平砂浆的性能满足《石膏基自流平砂浆》(JC/T 1023—2021)的要求,砂浆的28 d绝干抗折强度、28 d绝干抗压强度分别为12.0、45.9 MPa,软化系数高达0.886,吸水率低至2.8%。  相似文献   

8.
为研制一种适用于历史建筑修复的绿色无机修复材料,本文基于青岛多栋砖砌体结构历史建筑黏结材料的XRD测试结果,通过掺偏高岭土制备了基于人造水硬性石灰的修复砂浆,测试了人造水硬性石灰砂浆的流动度、凝结时间、质量损失率、干燥收缩率以及力学性能等指标,研究了偏高岭土对人造水硬性石灰砂浆的影响。结果表明:偏高岭土可降低人造水硬性石灰砂浆的流动度,缩短凝结时间,降低收缩率,提高抗压强度及黏结强度。当掺量为5.0%和7.5%(质量分数)时,人造水硬性石灰砂浆的56 d抗压强度分别提升了66.8%和94.3%,黏结强度分别提升了22.2%和25.9%。采用XRD和SEM对材料的微观结构进行测试分析发现,偏高岭土能使人造水硬性石灰砂浆性能提升的主要原因是偏高岭土中的活性SiO2和Al2O3与石灰发生直接反应并消耗Ca(OH)2,促进了水泥水化,增强了水化产物与骨料间的黏结力。  相似文献   

9.
本文研究了单掺超细矿粉和硅灰对超早强聚合物修补砂浆工作性能、力学性能和黏结性能的影响。结果表明:在超细矿粉掺量为6%时,修补砂浆7 d和28 d抗压强度最大,流动度与空白组相比变化不大;而当掺量提高到8%时,修补砂浆拥有最优的黏结强度,其中拉伸黏结强度为2.0 MPa,界面弯拉强度为6.0 MPa。随着硅灰掺量增加,流动度显著下降,在硅灰掺量为4%时,修补砂浆2 h和1 d抗压强度最大,远高于空白组;但当掺量超过4%时,黏结强度明显下降。此外,一定量的超细矿粉和硅灰的加入,有助于改善超早强聚合物修补砂浆抗折强度的倒缩。  相似文献   

10.
将改性磷石膏在球磨机中粉磨不同时间,制成不同比表面积的改性磷石膏浆体,然后与矿渣粉、熟料粉按一定比例混合制得磷石膏矿渣基水泥,测试其性能。研究结果表明,随着改性磷石膏比表面积的增加,磷石膏矿渣基水泥的凝结时间呈缓慢缩短趋势,而胶砂流动度会先增大后减小,3d、7d和28d胶砂强度也有很明显的先增大后减小的趋势,28d抗压强度最高可达58.5MPa。  相似文献   

11.
研究不同外加剂对湿拌砂浆稠度损失、保水率、凝结时间、抗压强度、粘结强度以及收缩率等性能的影响,并借助X-射线衍射(XRD)、扫描电镜(SEM)对掺加不同外加剂的湿拌砂浆胶凝体系进行微观测试分析.研究结果表明:掺加外加剂均能不同程度地减少湿拌砂浆的8h稠度损失,增强湿拌砂浆的保水率,延长湿拌砂浆的凝结时间,提高湿拌砂浆的抗压强度和粘结强度,能更好地保证工程施工的顺利进行.  相似文献   

12.
通过三聚磷酸钠、羟丙基甲基纤维素醚、骨料掺量优化得到重质抹灰石膏配比,并针对骨料性质对抹灰石膏物理性能的影响进行了研究。结果表明:磷建筑石膏(PBG):骨料为1:1,按磷建筑石膏质量外掺0.5%(ω)三聚磷酸钠、0.1%(ω)羟丙基甲基纤维素醚(HPMC),制得重质抹灰石膏符合国家标准要求;大尺寸机制砂缩短抹灰石膏砂浆的凝结时间,增大样品保水率,低掺量粗机制砂增大样品抗折抗压强度,但不利于拉伸粘结强度,石英砂影响趋势则相反。  相似文献   

13.
磷石膏对中热水泥和矿渣水泥凝结时间的影响:水泥的凝结时间延长,100%加磷石膏,中热水泥初、终凝结时间分别延长1:20,矿渣水泥分别延长40~50min.;随着混掺磷石膏比例的减少,凝结时间减少,当混掺25%以下,中热水泥和矿渣水泥凝结时间和正常水泥接近.磷石膏对中热水泥、矿渣水泥强度的影响:矿渣水泥3天、7天强度略有下降,下降约为1.5MPa左右,中热水泥100%和50%混掺,强度有所上升.总的说磷石膏对水泥强度的影响不很大.磷石膏作缓凝剂对油井水泥的稠化时间和强度影响较大,用于油井水泥上危害较大.不宜用于油井水泥生产上.  相似文献   

14.
试验研究了HPMC外加剂对湿拌砂浆稠度、保水率、抗压强度、拉伸黏结强度的影响.结果表明:HPMC可改善湿拌砂浆拌合物的黏聚性和保水性,但过量掺入会降低湿拌砂浆拌合物稠度;HPMC的掺入会降低湿拌砂浆试件抗压强度,且降低幅度较为显著,但可提高湿拌砂浆的拉伸黏结强度;HPMC以溶液形态掺入,对湿拌砂浆的黏聚性、保水性和力学性能的改善作用比以粉末形态直接掺入到湿拌砂浆中效果更佳.  相似文献   

15.
研究了粉煤灰、水泥、粉煤灰-石灰、水泥-石灰四种矿物掺合料对硝基β磷石膏的标稠、凝结时间、强度、吸水率和软化系数的影响。结果表明,不同矿物掺合料对硝基β磷石膏物理性能影响不同,粉煤灰的加入使得凝结时间延长,水泥的加入使得凝结时间变短;矿物掺合料会降低硝基β磷石膏强度,仅当粉煤灰-石灰掺入量分别为15%、5%时,抗折抗压强度保持不变;粉煤灰的掺入增大硝基β磷石膏软化系数,水泥可以降低吸水率。  相似文献   

16.
湿拌砂浆外加剂胶凝材料对于湿拌砂浆质量的控制至关重要。研究了十二烷基苯磺酸钠(LAS)、三萜皂甙、松香、十二烷基硫酸钠(K12)、α-烯基磺酸钠(AOS)5种引气剂对湿拌砂浆性能的影响。结果表明,掺入引气剂后,湿拌砂浆的初始稠度有了不同程度的增加,其中掺AOS的湿拌砂浆初始稠度增幅最大;引气剂的加入对湿拌砂浆的凝结时间有一定的影响,可以在一定程度上降低湿拌砂浆的稠度经时损失,但是对湿拌砂浆的保水率影响很小;引气剂对湿拌砂浆的强度影响很大,当引气剂的掺量超过0.015%以后,会严重影响湿拌砂浆28 d抗压强度。  相似文献   

17.
机械力化学效应对煤矸石水泥性能的影响   总被引:5,自引:0,他引:5  
从充分发挥煤矸石潜在活性的观点出发,通过机械力化学作用对煅烧后煤矸石的活性进行进一步激发.将粉磨后不同细度煤矸石以不同掺量与熟料、石膏配置复合水泥,测定其3d、28d强度,标准稠度用水量和凝结时间.结果表明,经高能球磨后的煤矸石,其20%掺量的水泥胶砂强度可达53.8MPa,掺量为40%的水泥胶砂强度达到44.1MPa;煤矸石越细,标准稠度用水量越大,凝结时间越短.  相似文献   

18.
本文采用了2种不同的处理方法,包括喷淋-抽滤法和湿拌-抽滤法,且通过实验数据分析得出最佳工艺控制参数,并对其配制的水泥进行了物理性能的检测。结果表明,喷淋-抽滤改性工艺的改性磷石膏强度石灰浆浓度3%、用量200 g、磷石膏铺层4 cm时,磷石膏滤饼各层面p H较均衡,洗涤效果较好;湿拌-抽滤工艺得到的改性磷石膏掺量为3.0%(SO3 1.2)、3.5%(SO3 1.4)时凝结时间较短。  相似文献   

19.
为提高砂浆垫层与预制混凝土墩柱、承台界面间的黏结性能,在连接处涂刷一层界面剂,采用水泥净浆为基准,以不同硅灰掺量为变量,研究硅灰掺量对预制混凝土界面黏结性能的影响,通过实验分别测试了抗折强度、抗压强度、劈拉强度及剪切强度。结果表明,从力学性能上看,同一龄期下,抗折及抗压强度均随着硅灰掺量的增加呈现先提升后下降的趋势,硅灰掺量为8%时的抗折与抗压强度值最大,分别为9.5,63.6 MPa,表现为力学性能最好;从黏结性能上看,劈拉及剪切强度均随着硅灰掺量的增加出现先增加后减小的现象,掺量为8%时,28 d强度值分别为1.7 MPa和1.65 MPa,黏结性能最优,28 d强度增长率较7 d分别提高了40%和65%。综合分析力学性能和黏结性能,得出硅灰掺量为8%时,界面黏结效果最优。  相似文献   

20.
水泥砂浆可用于水泥混凝土的修补,修补时要求水泥砂浆应具有较好的抗开裂性能和耐久性,而环氧树脂乳液具有很好的黏结性能与力学性能,因此本文采用环氧树脂乳液来改性水泥砂浆性能,研究了新拌水泥砂浆的性能(流动性、凝结时间、密度与含气量等)、改性水泥砂浆的强度、黏结性能及抗冻性。结果表明新拌砂浆的流动性变好,即环氧树脂乳液具有减水效果。环氧树脂乳液的掺入使改性水泥砂浆的密度降低,凝结时间延缓。改性砂浆的3 d、7 d及28 d的抗折强度和抗压强度较基准砂浆降低,在6%聚灰比时,强度提高,出现极大值。黏结性能测试结果表明环氧树脂乳液能提升改性水泥砂浆与老砂浆的界面黏结抗折强度。环氧树脂乳液使改性水泥砂浆的抗冻性提高,但双掺环氧树脂乳液及粉煤灰时,抗冻性下降明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号