首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The orthogonal frequency division multiplexing (OFDM) technique has been proposed for terrestrial digital transmission systems due to its high spectral efficiency, its robustness in different multipath propagation environments and the ability of avoiding intersymbol interference (ISI). Our studies consider a radio channel bandwidth of 8 MHz and a data rate of 34 Mbit/s.In the case of the OFDM transmission system a coherent 64-QAM requires a channel estimation process and a channel equalization in frequency-selective interference situations [4]. The equalization process can be realized by a multiplier bank at the FFT output in the receiver, a so-called frequency-domain equalizer. Alternatively, a multilevel differential modulation technique, the so-called differential amplitude and phase shift keying (64-DAPSK) considering the phase and simultaneously the amplitude for differential modulation, is proposed and presented in this paper. Differential modulation/demodulation techniques do not require any explicit knowledge about the radio channel properties in the differential channel equalization. It is therefore not necessary to implement a frequency-domain equalizer in an OFDM/64-DAPSK receiver, which reduces the computation complexity. The performance of both modulation techniques has been analysed in the uncoded and coded case referring to Gaussian and frequency-selective Rayleigh fading channels. Simulation results are presented in this paper.The OFDM signal has a non-constant envelope with large instantaneous power spikes possible primarily resulting in an overdriving of the high power amplifier (HPA) at the transmitter. This leads to nonlinear distortion causing intermodulation noise and spectral spreading. Both effects can be limited by introducing an appropriate input backoff (IBO). In this paper the performance of OFDM signals in the presence of nonlinearities is analysed quantitatively.  相似文献   

2.
Most comparisons between single carrier and multicarrier modulations assume frequency-domain linear equalization of the channel. We propose a new frequency-domain decision feedback equalizer (FD-DFE) for single carrier modulation, which makes use of a data block transmission format similar to that of the orthogonal frequency-division multiplexing with cyclic prefix (OFDM). The scheme is a nonadaptive DFE where the feedforward part is implemented in the frequency domain, while feedback signal is generated by time-domain filtering. Through simulations in a HIPERLAN-2 scenario, we show that FD-DFE yields a capacity very close to that of OFDM. This result is also confirmed by analytical derivations for a particular case. Furthermore, when no channel loading is considered, FD-DFE performs closely to OFDM for the same averaged frame error rate in a coded transmission. Design methods of the FD-DFE are investigated and a reduced complexity technique is developed, with the result that FD-DFE and OFDM have a similar computational complexity in signal processing  相似文献   

3.
Orthogonal frequency division multiplexing (OFDM) system suffers extra performance degradation in fast fading channels due to intercarrier interference (ICI). Combining frequency domain equalization and bit-interleaved coded modulation (BICM), the iterative receiver is able to harvest both temporal and frequency diversity. Realizing that ICI channels are intrinsically ISI channels, this paper proposes a soft-in soft-out (SISO) maximum a posteriori (MAP) equalizer by extending Ungerboeck's maximum likelihood sequence estimator (MLSE) formulation to ICI channels. The SISO MAP equalizer employs BCJR algorithm and computes the bit log-likelihood ratios (LLR) for the entire received sequence by efficiently constructing a trellis that takes into account of the ICI channel structure. A reduced state (RS) formulation of the SISO MAP equalizer which provides good performance/complexity tradeoff is also described. Utilizing the fact that ICI energy is clustered in adjacent subcarriers, frequency domain equalization is made localized. This paper further proposes two computational efficient linear minimum mean square error (LMMSE) based equalization methods: recursive q-tap SIC-LMMSE equalizer and recursive Sliding-Window (SW) SIC-LMMSE equalizer respectively. Simulations results demonstrate that the iterative SISO RS-MAP equalizer achieves the performance of no ICI with normalized Doppler frequency fdTs up to 20.46% in realistic mobile WiMAX environment.  相似文献   

4.
In this paper, we study the performance of the continuous phase modulation (CPM)‐based orthogonal frequency division multiplexing (CPM‐OFDM) system. Also, we propose a CPM‐based single‐carrier frequency domain equalization (CPM‐SC‐FDE) structure for broadband wireless communication systems. The proposed structure combines the advantages of the low complexity of SC‐FDE, in addition to exploiting the channel frequency diversity and the power efficiency of CPM. Both the CPM‐OFDM system and the proposed system are implemented with FDE to avoid the complexity of the equalization. Two types of frequency domain equalizers are considered and compared for performance evaluation of both systems; the zero forcing (ZF) equalizer and the minimum mean square error (MMSE) equalizer. Simulation experiments are performed for a variety of multipath fading channels. Simulation results show that the performance of the CPM‐based systems with multipath fading is better than their performance with single path fading. The performance over a multipath channel is at least 5 and 12 dB better than the performance over a single path channel, for the CPM‐OFDM system and the proposed CPM‐SC‐FDE system, respectively. The results also show that, when CPM is utilized in SC‐FDE systems, they can outperform CPM‐OFDM systems by about 5 dB. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
We propose a new, low-complexity frequency-domain equalizer, which, in the absence of a guard interval, utilizes redundancy in the frequency domain to completely eliminate intersymbol and interchannel interference. Simulation results show that the new equalization scheme has at least the same potential compared to conventional DMT/OFDM while offering the shortest possible latency at a reasonable complexity enhancement  相似文献   

6.
Single-carrier block transmission is an alternative scheme to orthogonal frequency-division multiplexing (OFDM) for wireless broadband communications. In this paper, a receiver is designed for single-carrier block transmission with cyclic prefix for mobile broadband communications. As the wireless transmission is over doubly selective channels, a basis expansion model is used to capture both the time- and frequency-selectivity of the channel and is parameterized for the receiver design. The receiver estimates the channel model coefficients in the time domain and uses these coefficients for equalization in the frequency domain. The channel estimation is assisted by time-domain pilot insertion. The structure of the frequency-domain channel matrix is exploited and a linear minimum mean-square error equalizer is used for the equalization. When the basis expansion model well matches the physical channel, simulation results show superior receiving performance of the proposed system compared with the OFDM system with a similar complexity.  相似文献   

7.
时域自适应均衡技术的分析与应用   总被引:1,自引:0,他引:1  
概述了频率选择性衰落信道的传输特性,论述了采用均衡技术的必要性。通过对各种均衡器结构和自适应均衡算法在抵抗符号间干扰能力、收敛速度以及运算复杂度等方面的分析与比较,选择了判决反馈作为均衡器结构、最小均方自适应算法作为自适应准则的均衡器方案。仿真及试验结果证实了设计的时域自适应均衡器不仅具有较强的抵抗符号间干扰能力,而且能够获得隐分集增益,在频率选择性衰落信道中具有良好的应用效果。  相似文献   

8.
陈少平  姚天任 《信号处理》2005,21(2):136-139
当信道参数随时间的快速变化时,正交频分复用通信系统(OFDM)子载波间的正交性遭到破坏,出现了载波间的相互干扰(ICI),传统的单抽头频域均衡不再适用。虽然可采用最小均方误差(MMSE)均衡来补偿信道失真,但其计算量太大。为此,常用的方法是:先对接收信号进行ICI消除,恢复载波间的正交性,然后再进行单抽头频域或均衡。现有文献对ICI的分析均在频域进行,在此基础上提出的ICI消除与均衡算法存在计算量大或频谱利用率低的缺点。本文对ICI的产生机理和性质进行了时域和频域两方面的分析,利用现有OFDM标准中的空闲子载波信息,提出了一种ICI消除与均衡算法。理论分析和计算机仿真结果表明:该算法具有ICI消除效果好、计算量小和频谱利用率高等优点。  相似文献   

9.
王欢  杨扬 《现代电子技术》2010,33(11):71-74
在高速移动下,OFDM系统载波间正交性被破坏,出现载波间干扰(ICI),严重影响系统性能,必须采用适当的均衡技术以补偿ICI。为了保证通信的有效性和实时性要求,使用FPGA实现了一种低复杂度的最小均方误差(MMSE)OFDM均衡器算法。在ISE软件平台上使用Verilog语言编写程序,并在Xilinx公司Virtex-2实验板(XC2V930芯片)上对设计进行了验证。  相似文献   

10.
We propose a two-stage precoder/equalizer to suppress intercarrier interference (ICI) and multiuser interference (MUI) in downlink multiuser OFDM with multiple transmit antennas. The first stage, non-linear Tomlinson-Harashima preceding (THP) at the base station (BS) transmitter, mitigates the effect of the spatial inter-stream interference caused by transmission from multiple transmit antennas to decentralized users. In the second stage, each user's receiver employs low- complexity iterative linear minimum mean-square error (MMSE) equalization to suppress the ICI due to frequency offset. Our proposed technique virtually eliminates the bit error rate (BER) degradation due to normalized frequency offsets as high as 10%.  相似文献   

11.
陈恩庆  陶然  张卫强  赵娟  孟祥意 《电子学报》2007,35(9):1728-1733
由于子载波间干扰(ICI)的影响,传统OFDM系统均衡方法在快速衰落的信道环境下性能有较大下降.本文提出了一种基于分数阶傅立叶变换的OFDM系统自适应均衡方法,它用分数阶傅立叶变换代替傅立叶变换进行子载波调制与解调,同时在分数阶傅立叶域对接收信号进行自适应均衡.文中给出了最优分数阶傅立叶变换阶次的选取方法,和分数阶傅立叶域最小均方算法的步骤.分析和数值仿真结果表明,最优分数阶傅立叶域的自适应均衡算法较传统频域方法有更好的均衡效果,并且复杂度不高.  相似文献   

12.
Novel semi-blind ICI equalization algorithm for wireless OFDM systems   总被引:2,自引:0,他引:2  
Intercarrier interference is deemed as one of the crucial problems in the wireless orthogonal frequency division multiplexing (OFDM) systems. The conventional ICI mitigation schemes involve the frequency-domain channel estimation or the additional coding, both of which require the spectral overhead and hence lead to the significant throughput reduction. Besides, the OFDM receivers using the ICI estimation rely on a large-dimensional matrix inverter with high computational complexity especially for many subcarriers such as digital video broadcasting (DVB) systems and wireless metropolitan-area networks (WMAN). To the best of our knowledge, no semi-blind ICI equalization has been addressed in the existing literature. Thus, in this paper, we propose a novel semi-blind ICI equalization scheme using the joint multiple matrix diagonalization (JMMD) algorithm to greatly reduce the intercarrier interference in OFDM. However, the well-known phase and permutation indeterminacies emerge in all blind equalization schemes. Hence we also design a few OFDM pilot blocks and propose an iterative identification method to determine the corresponding phase and permutation variants in our semi-blind scheme. Our semi-blind ICI equalization algorithm integrating the JMMD with the additional pilot-based iterative identification is very promising for the future high-throughput OFDM systems. Through Monte Carlo simulations, the QPSK-OFDM system with our proposed semi-blind ICI equalizer can achieve significantly better performance with symbol error rate reduction in several orders-of-magnitude. For the 16QAM-OFDM system, our scheme can also improve the performance over the plain OFDM system to some extent.  相似文献   

13.
In this paper, we present a single-carrier transceiver for rapidly time-varying channels, where the equalization step is implemented in the frequency domain. When the channel abides with both fast fading and severe inter-block interference, our equalizer relies on a band approximation of the frequency-domain channel matrix to maintain low complexity. We will show that the band approximation error can be associated in the time domain to a critically-sampled complex exponential basis expansion modeling error. Based on this property, we propose a novel receiver architecture that extends the original data model by inserting zeros at the receiver. The resulting effective channel can be characterized by an oversampled complex exponential basis expansion model, which has a considerably reduced modeling error compared to the critically-sampled one. In other words, the band assumption that is essential to the equalizer will be made more accurate and thus the equalization performance can be improved.  相似文献   

14.
单载波频域均衡在地空高速数据链的应用   总被引:1,自引:0,他引:1  
地空数据链的信道属于低仰角的多径信道,存在较严重的符号间干扰。正交频分复用(OFDM)是得到认可的有效抗多径方案,单载波频域均衡(SC-FDE)采用与OFDM相似的频域均衡方式,具有与OFDM相近的性能和复杂度,并克服了OFDM的一些不足。在比较SC-FDE和OFDM相似性、分析SC-FDE的信道估计与均衡基础上,提出了采用SC-FDE的地空高速数据链解调器结构,该结构在保留单载波处理的优点条件下实现高效的频域均衡。  相似文献   

15.
介绍了码间干扰以及消除码间干扰常用的三种方法.并从理论上比较了三种方法的性能,为了测试验证单载波频域均衡系统的性能,搭建了仿真系统进行了计算机仿真模拟.其仿真结果表明:与时域均衡相比较,频域均衡能有效提高均衡器的收敛速度和显著改善均衡器消除符号间干扰(ISI)的性能.  相似文献   

16.
A novel equalization/detection algorithm for orthogonal frequency division multiplexing (OFDM) signals transmitted over frequency-selective channels is introduced and investigated. The algorithm stems from the recognition that the Fourier transform processing inherent in OFDM turns a single wideband frequency-selective channel into a set of correlated narrowband frequency-flat fading channels. This suggests that sequence detection techniques, such as those discussed by Vitetta et al. (see IEEE Trans. Commun., vol.43, p.2750-8, 1995, IEEE Trans. Commun., vol.43, pt.II, p.1256-9, 1995, and Proc. IEEE Commun. Theory Mini-Conf (Globecom '96), London, UK, p.153-7, 1996), for time-selective flat-fading channels, can be also profitably utilized for joint equalization and decoding of OFDM signals in the frequency domain. Simulation results show that the proposed detection strategy, implemented via a standard Viterbi algorithm, provides improved performance over differential detection, with a moderate increase in receiver complexity and without requiring the periodic transmission of training blocks  相似文献   

17.
In this paper,a frequency domain decision feedback equalizer is proposed for single carrier transmission with time-reversal space-time block coding (TR-STBC).It is shown that the diagonal decision feed...  相似文献   

18.
Wavelet packet modulation (WPM) is a multicarrier modulation (MCM) technique that has emerged as a potential alternative to the widely used orthogonal frequency‐division multiplexing (OFDM) method. Because WPM has overlapped symbols, equalization cannot rely on the use of the cyclic prefix (CP), which is used in OFDM. This study applies linear minimum mean‐square error (MMSE) equalization in the time domain instead of in the frequency domain to achieve low computational complexity. With a modest equalizer filter length, the imperfection of MMSE equalization results in subcarrier attenuation and noise amplification, which are considered in the development of a bit‐loading algorithm. Analytical expressions for the bit error rate (BER) performance are derived and validated using simulation results. A performance evaluation is carried out in different test scenarios as per Recommendation ITU‐R M.1225. Numerical results show that WPM with equalization‐aware bit loading outperforms OFDM with bit loading. Because previous comparisons between WPM and OFDM did not include bit loading, the results obtained provide additional evidence of the benefits of WPM over OFDM.  相似文献   

19.
Equalization for OFDM over doubly selective channels   总被引:5,自引:0,他引:5  
In this paper, we propose a time-domain as well as a frequency-domain per-tone equalization for orthogonal frequency-division multiplexing (OFDM) over doubly selective channels. We consider the most general case, where the channel delay spread is larger than the cyclic prefix (CP), which results in interblock interference (IBI). IBI in conjunction with the Doppler effect destroys the orthogonality between subcarriers and, hence, results in severe intercarrier interference (ICI). In this paper, we propose a time-varying finite-impulse-response (TV-FIR) time-domain equalizer (TEQ) to restore the orthogonality between subcarriers, and hence to eliminate ICI/IBI. Due to the fact that the TEQ optimizes the performance over all subcarriers in a joint fashion, it has a poor performance. An optimal frequency-domain per-tone equalizer (PTEQ) is then obtained by transferring the TEQ operation to the frequency domain. Through computer simulations, we demonstrate the performance of the proposed equalization techniques.  相似文献   

20.
In recent years, power lines have gained significant interest for their use in high‐speed communications because of the already deployed power distribution infrastructure. However, to achieve high data rates with reliability in power line communication (PLC), robust signal processing techniques are required to mitigate channel distortion and noise. Orthogonal frequency division multiplexing (OFDM) as a multicarrier modulation technique has been standardized for PLC; however, to further enhance the quality of communication, wavelet OFDM (WOFDM) has been proposed as a suitable choice. In this article, OFDM‐based and WOFDM‐based PLC systems are studied, and overlap frequency domain equalization (OFDE) as a robust and efficient equalization technique is presented. Moreover, to enhance the efficiency of the OFDE, linear precoding (LP) is also suggested for fast Fourier transform and wavelet transform–based filter bank transceivers over the PLC channel. Performance of the proposed LP‐based OFDM‐OFDE and LP‐based WOFDM‐OFDE systems is compared with previously proposed equalization structures in terms of bit error rate, peak‐to‐average power ratio, and computational complexity via computer simulations. Furthermore, the performance of proposed architectures is also compared with classical equalization techniques under impulse noise with different intensities. Results show that not only the proposed LP‐based WOFDM‐OFDE transceiver performs better than the previous equalization models but also the LP‐based OFDM‐OFDE at the expense of slight increment in computational complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号