首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
目的 针对口罩遮挡的人脸姿态分类新需求,为了提高基于卷积神经网络的人脸姿态分类效率和准确率,提出了一个轻量级卷积神经网络用于口罩人脸姿态分类。方法 本文设计的轻量级卷积神经网络的核心为双尺度可分离注意力卷积单元。该卷积单元由3×3和5×5两个尺度的深度可分离卷积并联而成,并且将卷积块注意力模块(convolutional block attention module,CBAM)的空间注意力模块(spatial attention module,SAM)和通道注意力模块(channel attention module,CAM)分别嵌入深度(depthwise,DW)卷积和点(pointwise,PW)卷积中,针对性地对DW卷积及PW卷积的特征图进行调整。同时对SAM模块补充1×1的点卷积挤压结果增强其对空间信息的利用,形成更加有效的注意力图。在保证模型性能的前提下,控制构建网络的卷积单元通道数和单元数,并丢弃全连接层,采用卷积层替代,进一步轻量化网络模型。结果 实验结果表明,本文模型的准确率较未改进SAM模块分离嵌入CBAM的模型、标准方式嵌入CBAM的模型和未嵌入注意力模块的模型分别提升了2.86%、6.41% 和12.16%。采用双尺度卷积核丰富特征,在有限的卷积单元内增强特征提取能力。与经典卷积神经网络对比,本文设计的模型仅有1.02 MB的参数量和24.18 MB的每秒浮点运算次数(floating-point operations per second,FLOPs),大幅轻量化了模型并能达到98.57%的准确率。结论 本文设计了一个轻量高效的卷积单元构建网络模型,该模型具有较高的准确率和较低的参数量及计算复杂度,提高了口罩人脸姿态分类模型的效率和准确率。  相似文献   

2.
目的 随着3维采集技术的飞速发展,点云在计算机视觉、自动驾驶和机器人等领域有着广泛的应用前景。深度学习作为人工智能领域的主流技术,在解决各种3维视觉问题上已表现出巨大潜力。现有基于深度学习的3维点云分类分割方法通常在聚合局部邻域特征的过程中选择邻域特征中的最大值特征,忽略了其他邻域特征中的有用信息。方法 本文提出一种结合动态图卷积和空间注意力的点云分类分割方法(dynamic graph convolution spatial attention neural networks,DGCSA)。通过将动态图卷积模块与空间注意力模块相结合,实现更精确的点云分类分割效果。使用动态图卷积对点云数据进行K近邻构图并提取其边特征。在此基础上,针对局部邻域聚合过程中容易产生信息丢失的问题,设计了一种基于点的空间注意力(spatial attention,SA)模块,通过使用注意力机制自动学习出比最大值特征更具有代表性的局部特征,从而提高模型的分类分割精度。结果 本文分别在ModelNet40、ShapeNetPart和S3DIS(Stanford Large-scale 3D Indoor Spaces Dataset)数据集上进行分类、实例分割和语义场景分割实验,验证模型的分类分割性能。实验结果表明,该方法在分类任务上整体分类精度达到93.4%;实例分割的平均交并比达到85.3%;在室内场景分割的6折交叉检验平均交并比达到59.1%,相比基准网络动态图卷积网络分别提高0.8%、0.2%和3.0%,有效改善了模型性能。结论 使用动态图卷积模块提取点云特征,在聚合局部邻域特征中引入空间注意力机制,相较于使用最大值特征池化,可以更好地聚合邻域特征,有效提高了模型在点云上的分类、实例分割与室内场景语义分割的精度。  相似文献   

3.
目的 遥感图像道路提取在城市规划、交通管理、车辆导航和地图更新等领域中发挥了重要作用,但遥感图像受光照、噪声和遮挡等因素以及识别过程中大量相似的非道路目标干扰,导致提取高质量的遥感图像道路有很大难度。为此,提出一种结合上下文信息和注意力机制的U-Net型道路分割网络。方法 使用Resnet-34预训练网络作为编码器实现特征提取,通过上下文信息提取模块对图像的上下文信息进行整合,确保对道路的几何拓扑结构特征的提取;使用注意力机制对跳跃连接传递的特征进行权重调整,提升网络对于道路边缘区域的分割效果。结果 在公共数据集Deep Globe道路提取数据集上对模型进行测试,召回率和交并比指标分别达到0.847 2和0.691 5。与主流方法U-Net和CE-Net(context encoder network)等进行比较,实验结果表明本文方法在性能上表现良好,能有效提高道路分割的精确度。结论 本文针对遥感图像道路提取中道路结构不完整和道路边缘区域不清晰问题,提出一种结合上下文信息和注意力机制的遥感道路提取模型。实验结果表明该网络在遥感图像道路提取上达到良好效果,具有较高的研究和应用价值。  相似文献   

4.
目的 卷积神经网络(convolutional neural network,CNN)在计算机辅助诊断(computer-aided diagnosis,CAD)肺部疾病方面具有广泛的应用,其主要工作在于肺部实质的分割、肺结节检测以及病变分析,而肺实质的精确分割是肺结节检出和肺部疾病诊断的关键。因此,为了更好地适应计算机辅助诊断系统要求,提出一种融合注意力机制和密集空洞卷积的具有编码—解码模式的卷积神经网络,进行肺部分割。方法 将注意力机制引入网络的解码部分,通过增大关键信息权重以突出目标区域抑制背景像素干扰。为了获取更广更深的语义信息,将密集空洞卷积模块部署在网络中间,该模块集合了Inception、残差结构以及多尺度空洞卷积的优点,在不引起梯度爆炸和梯度消失的情况下,获得了更深层次的特征信息。针对分割网络常见的特征丢失等问题,对网络中的上/下采样模块进行改进,利用多个不同尺度的卷积核级联加宽网络,有效避免了特征丢失。结果 在LUNA (lung nodule analysis)数据集上与现有5种主流分割网络进行比较实验和消融实验,结果表明,本文模型得到的预测图更接近于标签图像。Dice相似系数、交并比(intersection over union,IoU)、准确度(accuracy,ACC)以及敏感度(sensitivity,SE)等评价指标均优于对比方法,相比于性能第2的模型,分别提高了0.443%,0.272%,0.512%以及0.374%。结论 本文提出了一种融合注意力机制与密集空洞卷积的肺部分割网络,相对于其他分割网络取得了更好的分割效果。  相似文献   

5.
目的 卷积神经网络结合U-Net架构的深度学习方法广泛应用于各种医学图像处理中,取得了良好的效果,特别是在局部特征提取上表现出色,但由于卷积操作本身固有的局部性,导致其在全局信息获取上表现不佳。而基于Transformer的方法具有较好的全局建模能力,但在局部特征提取方面不如卷积神经网络。为充分融合两种方法各自的优点,提出一种基于分组注意力的医学图像分割模型(medical image segmentation module based on group attention,GAU-Net)。方法 利用注意力机制,设计了一个同时集成了Swin Transformer和卷积神经网络的分组注意力模块,并嵌入网络编码器中,使网络能够高效地对图像的全局和局部重要特征进行提取和融合;在注意力计算方式上,通过特征分组的方式,在同一尺度特征内,同时进行不同的注意力计算,进一步提高网络提取语义信息的多样性;将提取的特征通过上采样恢复到原图尺寸,进行像素分类,得到最终的分割结果。结果 在Synapse多器官分割数据集和ACDC (automated cardiac diagnosis challenge)数据集上进行了相关实验验证。在Synapse数据集中,Dice值为82.93%,HD(Hausdorff distance)值为12.32%,相较于排名第2的方法,Dice值提高了0.97%,HD值降低了5.88%;在ACDC数据集中,Dice值为91.34%,相较于排名第2的方法提高了0.48%。结论 本文提出的医学图像分割模型有效地融合了Transformer和卷积神经网络各自的优势,提高了医学图像分割结果的精确度。  相似文献   

6.
目的 脑肿瘤核磁共振(magnetic resonance,MR)图像分割对评估病情和治疗患者具有重要意义。虽然深度卷积网络在医学图像分割中取得了良好表现,但由于脑胶质瘤的恶性程度与外观表现有巨大差异,脑肿瘤MR图像分割仍是一项巨大挑战。图像语义分割的精度取决于图像特征的提取和处理效果。传统的U-Net网络以一种低效的拼接方式集成高层次特征和低层次特征,从而导致图像有效信息丢失,此外还存在未能充分利用上下文信息和空间信息的问题。对此,本文提出一种基于注意力机制和多视角融合U-Net算法,实现脑肿瘤MR图像的分割。方法 在U-Net的解码和编码模块之间用多尺度特征融合模块代替传统的卷积层,进行多尺度特征映射的提取与融合;在解码模块的级联结构中添加注意力机制,增加有效信息的权重,避免信息冗余;通过融合多个视角训练的模型引入3维图像的空间信息。结果 提出的模型在BraTS18(Multimodal Brain Tumor Segmentation Challenge 2018)提供的脑肿瘤MR图像数据集上进行验证,在肿瘤整体区域、肿瘤核心区域和肿瘤增强区域的Dice score分别为0.907、0.838和0.819,与其他方法进行对比,较次优方法分别提升了0.9%、1.3%和0.6%。结论 本文方法改进了传统U-Net网络提取和利用图像语义特征不足的问题,并引入了3维MR图像的空间信息,使得肿瘤分割结果更加准确,具有良好的研究和应用价值。  相似文献   

7.
目的 脊椎CT(computed tomography)图像存在组织结构显示不佳、对比度差以及噪音干扰等问题;传统分割算法分割精度低,分割过程需人工干预,往往只能实现半自动分割,不能满足实时分割需求。基于卷积神经网络(convolutional neural network,CNN)的U-Net模型成为医学图像分割标准,但仍存在长距离交互受限的问题。Transformer集成全局自注意力机制,可捕获长距离的特征依赖,在计算机视觉领域表现出巨大优势。本文提出一种CNN与Transformer混合分割模型TransAGUNet (Transformer attention gate U-Net),以实现对脊椎CT图像的高效自动化分割。方法 提出的模型将Transformer、注意力门控机制(attention gate,AG)及U-Net相结合构成编码—解码结构。编码器使用Transformer和CNN混合架构,提取局部及全局特征;解码器使用CNN架构,在跳跃连接部分融入AG,将下采样特征图对应的注意力图(attention map)与下一层上采样后获得的特征图进行拼接,融合低层与高层特征从而实现更精细的分割。实验使用Dice Loss与带权重的交叉熵之和作为损失函数,以解决正负样本分布不均的问题。结果 将提出的算法在VerSe2020数据集上进行测试,Dice系数较主流的CNN分割模型U-Net、Attention U-Net、U-Net++和U-Net3+分别提升了4.47%、2.09%、2.44%和2.23%,相较优秀的Transformer与CNN混合分割模型TransUNet和TransNorm分别提升了2.25%和1.08%。结论 本文算法较以上6种分割模型在脊椎CT图像的分割性能最优,有效地提升了脊椎CT图像的分割精度,分割实时性较好。  相似文献   

8.
目的 遥感影像地物提取是遥感领域的研究热点。由于背景和地物类型复杂多样,单纯利用传统方法很难对地物类别进行准确区分和判断,因而常常造成误提取和漏提取。目前基于卷积神经网络CNN(convolutional neural network)的方法进行地物提取的效果普遍优于传统方法,但需要大量的时间进行训练,甚至可能出现收敛慢或网络不收敛的情况。为此,基于多视觉信息特征的互补原理,提出了一种双视觉全卷积网络结构。方法 该网络利用VGG(visual geometry group)16和AlexNet分别提取局部和全局视觉特征,并经过融合网络对两种特征进行处理,以充分利用其包含的互补信息。同时,将局部特征提取网络作为主网络,减少计算复杂度,将全局特征提取网络作为辅助网络,提高预测置信度,加快收敛,减少训练时间。结果 选取公开的建筑物数据集和道路数据集进行实验,并与二分类性能优异的U-Net网络和轻量型Mnih网络进行对比。实验结果表明,本文提出的双视觉全卷积网络的平均收敛时间仅为U-Net网络的15.46%;提取精度与U-Net相当,远高于Mnih;在95%的置信水平上,该网络的置信区间明显优于U-Net。结论 本文提出的双视觉全卷积网络,融合了影像中地物的局部细节特征和全局特征,能保持较高的提取精度和置信度,且更易训练和收敛,为后续遥感影像地物提取与神经网络的设计提供了参考方向。  相似文献   

9.
目的 道路提取是常见的遥感应用之一。现有的基于深度卷积网络的道路提取方法往往未考虑云遮挡给道路提取带来的影响,且提取网络模型较大,不利于在移动端部署,同时缺乏用于云遮挡场景下的道路提取数据集。对此,本文提出一种轻量化的UNet网络(lightweight UNet,L-UNet),高效地实现云遮挡下的道路提取。方法 通过柏林噪声模拟云层以扩展现有道路提取数据集,进而训练L-UNet。使用移动翻转瓶颈卷积模块作为特征提取的主要结构,在深度可分离卷积的基础上加入扩展卷积和压缩激励模块,在减少参数量的同时大幅提升了分割效果。结果 在DeepGlobe道路提取扩展数据集的测试中,与D-LinkNet相比,L-UNet的交并比(intersection over union,IoU)提升了1.97%,而参数量仅为D-LinkNet的1/5。在真实云遮挡遥感图像道路提取测试中,L-UNet的性能仍然最优,与D-LinkNet和UNet相比,IoU值分别提高19.47%和31.87%。结论 L-UNet网络具有一定的云遮挡区域下道路标签生成能力,虽然在模拟云遮挡数据集下训练得到,但对于真实云遮挡仍具有较强的鲁棒性。L-UNet模型参数量很小,易于嵌入移动端。  相似文献   

10.
目的 胸腔积液肿瘤细胞团块的分割对肺癌的筛查有着积极作用。胸腔积液肿瘤细胞团块显微图像存在细胞聚集、对比度低和边界模糊等问题,现有网络模型进行细胞分割时无法达到较高精度。提出一种基于UNet网络框架,融合过参数卷积与注意力机制的端到端语义分割模型DOCUNet (depthwise over-parameterized CBAM UNet)。方法 将UNet网络中的卷积层替换为过参数卷积层。过参数卷积层结合了深度卷积和传统卷积两种卷积,保证网络深度不变的同时,提高模型对图像特征的提取能力。在网络底端的过渡区域,引入结合了通道注意力与空间注意力机制的注意力模块CBAM (convolutional block attention module),对编码器提取的特征权重进行再分配,增强模型的分割能力。结果 在包含117幅显微图像的胸腔积液肿瘤细胞团块数据集上进行5折交叉实验。平均IoU (intersection over union)、Dice系数、精确率、召回率和豪斯多夫距离分别为0.858 0、0.920 4、0.928 2、0.920 3和18.17。并且与UNet等多种已存在的分割网络模型进行对比,IoU、Dice系数和精确率、召回率相较于UNet提高了2.80%、1.65%、1.47%和1.36%,豪斯多夫距离下降了41.16%。通过消融实验与类激活热力图,证明加入CBAM注意力机制与过参数卷积后能够提高网络分割精度,并能使网络更加专注于细胞的内部特征。结论 本文提出的DOCUNet将过参数卷积和注意力机制与UNet相融合,实现了胸水肿瘤细胞团块的有效分割。经过对比实验证明所提方法提高了细胞分割的精度。  相似文献   

11.
目的 针对目前基于深度学习的脑肿瘤分割算法参数量大、计算复杂和快速性差的问题,提出了一种超轻量级快速语义分割网络LRUNet (lightweight rapid UNet),在保证分割精度提升的同时,极大地减少了网络的参数量与计算量,达到快速分割的效果。方法 LRUNet网络结构基于UNet,将3D-UNet的通道数减少为原来的1/4,减少原先3D-UNet过多的参数量;将UNet网络中除最后一层外的所有传统卷积变为深度可分离卷积,深度可分离卷积以牺牲极少精度,大大减少网络参数量,实现网络的轻量级;使用空间—通道压缩和激发模块(spatial and channel squeeze&excitation block,scSE),该模块能够放大特征图中对模型有利的参数的权重,缩小对模型不利参数的权重,提升网络分割的精度。结果 在BraTS 2018(Brain Tumor Segmentation Challenge 2018)数据集上的在线验证结果显示,该模型在全肿瘤、核心区肿瘤和增强区肿瘤分割的平均Dice系数分别为0.893 6、0.804 6和0.787 2。LRUNet与同为轻量级网络的S3D-UNet相比Dice有所提升,但是,参数量仅为S3D-UNet的1/4,FLOPs (floating point operations per second)仅为1/2。结论 与3D-UNet、S3D-UNet和3D-ESPNet等算法相比,LRUNet算法不仅保证精度得到提升,而且极大地减少网络中计算的参数量与计算成本消耗,同时网络模型的预测速度得到很大提升,使得快速语义分割在3维医学图像领域成为可能。  相似文献   

12.
深度卷积神经网络在医学图像分割领域运用广泛,目前的网络改进普遍是引入多尺度融合结构,增加了模型的复杂度,在提升精度的同时降低了训练效率。针对上述问题,提出一种新型的WU-Net肺结节图像分割方法。该方法对U-Net网络进行改进,在原下采样编码通路引入改进的残余连接模块,同时利用新提出的dep模块改进的信息通路完成特征提取和特征融合。实验利用LUNA16的数据集对WU-Net和其他模型进行训练和验证,在以结节为尺度的实验中,Dice系数和交并比分别能达到96.72%、91.78%;在引入10%的负样本后,F;值达到了92.41%,相比UNet3+提高了1.23%;在以肺实质为尺度的实验中,Dice系数和交并比分别达到了83.33%、66.79%,相比RU-Net分别提升了1.35%、2.53%。相比其他模型,WU-Net模型的分割速度最快,比U-Net提升了39.6%。结果显示,WU-Net提升肺结节分割效果的同时加快了模型的训练速度。  相似文献   

13.
针对复杂地形条件下道路特征选取不具代表性,分割精度低的问题,提出了一种基于卷积神经网络(PPMU-net)的高分辨率遥感道路提取的方法。将3通道的高分二号光谱信息与相应的地形信息(坡度、坡向、数字高程信息)进行多特征融合,合成6通道的遥感图像;对多特征的遥感图像进行切割并利用卷积网络(CNN)筛选出含道路的图像;将只含道路的遥感图像送进PPMU-net中训练,构建出高分辨率遥感图像道路提取模型。在与U-net神经网络、PSPnet神经网络相比时,所提的方法在对高分辨率遥感道路提取时能够达到较好的效果,提高了复杂地形条件下道路分割的精度。  相似文献   

14.
针对目前沥青路面裂缝检测存在的识别率低和细微裂缝在复杂背景下难以检测的问题, 提出了基于改进Faster-RCNN的裂缝检测方法. 首先, 通过多功能路面检测车采集路面图像, 将13 000张图片按8:2的比例分为训练集和测试集来建成路面裂缝检测数据集; 然后分别采用VGG16、MobileNet-V2和ResNet50网络替换Faster-RCNN模型中的特征提取网络对裂缝进行识别, 结果表明, ResNet50与Faster-RCNN结合对裂缝的检测准确率达到0.805 8, 效果最好; 裂缝都分布在同一水平面上, 不存在层次信息, 因此将ResNet系列其它网络与Faster-RCNN模型结合, 以期得到更好的检测效果, 结果表明, 相比于ResNet18和ResNet101, 还是ResNet50检测性能最好; 由于还存在细微裂缝漏检的问题, 将CBAM模块引入ResNet50, 并且比较不同插入位置对检测准确率的影响. 实验表明, 改进的Faster-RCNN模型检测精准度达到85.64%, 能有效检测出复杂背景下的细微裂缝.  相似文献   

15.
目的 合成孔径雷达图像目标识别可以有效提高合成孔径雷达数据的利用效率。针对合成孔径雷达图像目标识别滤波处理耗时长、识别精度不高的问题,本文提出一种卷积神经网络模型应用于合成孔径雷达图像目标识别。方法 首先,针对合成孔径雷达图像特点设计特征提取部分的网络结构;其次,代价函数中引入L2范数提高模型的抗噪性能和泛化性;再次,全连接层使用Dropout减小网络的运算量并提高泛化性;最后研究了滤波对于网络模型的收敛速度和准确率的影响。结果 实验使用美国运动和静止目标获取与识别数据库,10类目标识别的实验结果表明改进后的卷积神经网络整体识别率(包含变体)由93.76%提升至98.10%。通过设置4组对比实验说明网络结构的改进和优化的有效性。卷积神经网络噪声抑制实验验证了卷积神经网络的特征提取过程对于SAR图像相干斑噪声有抑制作用,可以省去耗时的滤波处理。结论 本文提出的卷积神经网络模型提高了网络的准确率、泛化性,无需耗时的滤波处理,是一种合成孔径雷达图像目标识别的有效方法。  相似文献   

16.
针对虹膜图像中存在眼镜遮挡、模糊、角度偏差等不同噪声因素,我们设计了一种基于Mask R-CNN的卷积神经网络(convolutional neural network, CNN),命名为Mask-INet,用于虹膜分割.该网络在特征提取阶段为特征金字塔添加了一条自底向上的路径,既提高了底层到顶层特征的定位信息,增强语义信息融合,又进一步加快了底层到顶层的传播效率,有效提升对虹膜特征提取的准确性.为了进一步挖掘特征图中的特征信息,在掩模预测分支阶段,我们引入上采样和CBAM网络(convolutional block attention module),利用上采样提高特征图的空间分辨率,利用CBAM网络让特征图中的显著信息更加显著,增强对特征的判别性.该方法在NIR-ISL 2021比赛提供的虹膜数据集进行了验证.在相同实验条件下与该赛事的冠军相比,该方法的各项指标均优于其网络.与基线Mask R-CNN相比,该方法的Dice相似系数、平均交并比、召回率分别提升了8.53%、11.97%、8.88%,提升了虹膜分割效果.  相似文献   

17.
目的 为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法 变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果 实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势。结论 实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号