首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Materialia》2002,50(9):2381-2393
The influence of microstructure and load ratio (R) on the fatigue crack growth (FCG) characteristics of WC–Co cemented carbides are studied. In doing so, five hardmetal grades with different combinations of binder content and carbide grain size are investigated. Attempting to rationalize microstructural effects, key two-phase parameters, i.e. binder thickness and carbide contiguity, are used. On the other hand, the effect of load ratio is evaluated from the FCG behavior measured under R values of 0.1, 0.4 and 0.7. Experimental results indicate that: (1) WC–Co cemented carbides are markedly sensitive to fatigue; and (2) their FCG rates exhibit an extremely large dependence on Kmax. Furthermore, both fatigue sensitivity and relative prevalence of Kmax over ΔK, as the controlling fatigue mechanics parameter, are found to be significantly dependent upon microstructure. As mean binder free path increases, predominance of static over cyclic failure modes diminishes and a transition from a ceramic-like FCG behavior to a metallic-like one occurs (conversely in relation to contiguity). Consequently, the trade-off between fracture toughness and FCG resistance becomes more pronounced with increasing binder content and carbide grain size. The observed behavior is attributed to the effective low ductility of the constrained binder and its compromising role as the toughening and fatigue-susceptible agent in hardmetals, the latter on the basis that cyclic loading degrades or inhibits toughening mechanisms operative under monotonic loading, i.e. crack bridging and constrained plastic stretching.  相似文献   

2.
We have examined the variations, with decreasing load ratio, of threshold peak and cyclic stress intensities required for fatigue crack growth in stage I (mainly mode II loading) using a simple model simulating dislocation motion near a crack tip. In this model the crack grows by dislocations running into the crack during loading and unloading phases. Initially we have studied the behaviour of a crack with a dislocation source relatively far away from the crack tip. Crack propagation rates showed a Paris regime at high ΔK, and an abrupt threshold value ΔKth below which no crack growth occurred. The variation with load ratio of the peak (Kth) and cyclic (ΔKth) stress intensities at the fatigue threshold showed that two different processes controlled the behaviour. At high load ratios dislocations are generated readily during loading and the threshold is controlled by the need for sufficient unloading to allow dislocations to run back into the crack, so that the criterion ΔK ≥ ΔK∗ results. At negative load ratios it is the generation of dislocations during the loading phase that controls the threshold condition, since once generated, the large unloading and reversed loading easily forces dislocations back to the crack. Under these conditions the threshold criterion becomes Kmax ≥ K∗.  相似文献   

3.
The fatigue crack growth (FCG) mechanism of a cast hybrid metal matrix composite (MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whiskers and a cast Al alloy were also investigated. The results show that the FCG mechanism is observed in the near-threshold and stable-crack-growth regions. The hybrid MMC shows a higher threshold stress intensity factor range, ΔKth, than the MMC with Al2O3 and Al alloy, indicating better resistance to crack growth in a lower stress intensity factor range, ΔK. In the near-threshold region with decreasing ΔK, the two composite materials exhibit similar FCG mechanism that is dominated by debonding of the reinforcement–matrix interface, and followed by void nucleation and coalescence in the Al matrix. At higher ΔK in the stable- or mid-crack-growth region, in addition to the debonding of the particle–matrix and whisker–matrix interface caused by cycle-by-cycle crack growth at the interface, the FCG is affected predominantly by striation formation in the Al matrix. Moreover, void nucleation and coalescence in the Al matrix and transgranular fracture of SiC particles and Al2O3 whiskers at high ΔK are also observed as the local unstable fracture mechanisms. However, the FCG of the monolithic Al alloy is dominated by void nucleation and coalescence at lower ΔK, whereas the FCG at higher ΔK is controlled mainly by striation formation in the Al grains, and followed by void nucleation and coalescence in the Si clusters.  相似文献   

4.
《Acta Materialia》2001,49(16):3189-3203
Analyses of cyclic loading of a plane strain mode I crack under small-scale yielding are carried out using discrete dislocation dynamics. The formulation is the same as used to analyze crack growth under monotonic loading conditions, differing only in the remote stress intensity factor being a cyclic function of time. The dislocations are all of edge character and are modeled as line singularities in an elastic solid. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. Either reversible or irreversible relations are specified between the opening traction and the displacement jump across a cohesive surface ahead of the initial crack tip in order to simulate cyclic loading as could occur in a vacuum or in an oxidizing environment, respectively. In accord with experimental data we find that the fatigue threshold ΔKth is weakly dependent on the load ratio R when the reversible cohesive surface is employed. This intrinsic dependence of the threshold on R is an outcome of source limited plasticity at low R values and plastic shakedown at higher R values. On the other hand, ΔKth is seen to decrease approximately linearly with increasing R followed by a plateau when the irreversible cohesive law is used. Our simulations show that in this case the fatigue threshold is dominated by crack closure at low values of R. Calculations illustrating the effects of obstacle density, tensile overloads and slip geometry on cyclic crack growth behavior are also presented.  相似文献   

5.
《Acta Materialia》1999,47(9):2727-2740
The fatigue crack growth behavior of an experimental, single crystal alloy, of equivalent nominal chemical composition to Inconel 718 is presented. Fracture modes under cyclic loading were determined by scanning electron microscopy. The results of the fractographic analyses are presented on a fracture mechanism map that shows the dependence of the fatigue fracture mechanisms on the maximum stress intensity factor, Kmax, and the stress intensity factor range, ΔK. Crack-tip deformation mechanisms associated with fatigue crack growth were studied using transmission electron microscopy. The relative effects of ΔK and Kmax on the fatigue crack growth behavior of this material are discussed within the context of a two-parameter crack growth law. The influence of grain boundaries on the fatigue crack growth resistance of materials such as Inconel 718 is also discussed in light of the results of this investigation.  相似文献   

6.
《Acta Materialia》2003,51(4):1045-1057
High spatial resolution synchrotron X-ray strain mapping has been used to map the elastic matrix and fibre strains in the vicinity of a fatigue crack in a Ti–6Al–4V/SCS6 SiC fibre composite. A 0.61 mm fatigue crack was initiated and grown in three-point-bending. By using an in-situ loading stage it was possible to map the crack opening (longitudinal) strain distribution at Kappl=Kmax and Kappl=0. In the far field region, significant thermally induced stresses were evident, being compressive in the fibres and tensile in the matrix. Around the notch and in the wake of the crack tip essentially no residual strain and only small interfacial shear stresses were found in the unloaded case, indicative of a debonded/damaged interface. At Kmax the maximum tensile stress in the matrix is in the vicinity of the crack tip, whereas for the SiC fibres the maximum stress is in the bridging zone in the wake of the crack. The perturbed zone extends about ±1.5 mm either side of the crack. It was at the boundary of this zone that the maximum interfacial shear stresses (∼80 MPa) were measured in the loaded stage. A small area of tensile strain in front of the crack tip in the unloaded condition suggests frictional resistance from the bridging fibres acts to keep the crack slightly open. A simple three-dimensional finite element model has been developed to help interpret the results. The crack is introduced statically by node release and the Coulomb friction law governs the interface strength. The results of the model are compared to the synchrotron strain measurements. This comparison confirms the degradation of the interface strength in the wake of the crack.  相似文献   

7.
The objective of this study was to quantify the effects of mechanical and environmental variables on oxygen-modified accelerated fatigue crack growth of steels in hydrogen gas. Experimental results show that in hydrogen gas containing up to 1000 v.p.p.m. oxygen fatigue crack growth rates for X52 line pipe steel are initially coincident with those measured in air or inert gas, but these rates abruptly accelerate above a critical ΔK level that depends on the oxygen concentration. In addition to the bulk gas oxygen concentration, the onset of hydrogen-accelerated crack growth is affected by the load cycle frequency and load ratio R. Hydrogen-accelerated fatigue crack growth is actuated when threshold levels of both the inert environment crack growth rate and Kmax are exceeded. The inert environment crack growth rate dictates the creation of new crack tip surface area, which in turn determines the extent of crack tip oxygen coverage and associated hydrogen uptake, while Kmax governs the activation of hydrogen-assisted fracture modes through its relationship to the crack tip stress field. The relationship between the inert environment crack growth rate and crack tip hydrogen uptake is established through the development of an analytical model, which is formulated based on the assumption that oxygen coverage can be quantified from the balance between the rates of new crack tip surface creation and diffusion-limited oxygen transport through the crack channel to this surface. Provided Kmax exceeds the threshold value for stress-driven hydrogen embrittlement activation, this model shows that stimulation of hydrogen-accelerated crack growth depends on the interplay between the inert environment crack growth increment per cycle, load cycle frequency, R ratio and bulk gas oxygen concentration.  相似文献   

8.
In order to evaluate the effect of hydrogen on mechanical properties of 23Co14Ni12Cr3Mo ultrahigh strength steel, the specimens were electrochemically hydrogen charged for different times. The tensile property, fatigue fracture behavior, fatigue crack growth (FCG) behavior, and threshold stress intensity (ΔK th) of the samples were studied. The fracture morphology was characterized by scanning electron microscopy. It was shown that tensile strength decreases from 2300 to 2000 MPa, critical fatigue stress from 577 to 482 MPa, and ΔK th from 27.4 to 14.3 MPam0.5 with the increasing hydrogen contents from 0.0001 to 0.0008 wt.%. Hydrogen enhances the FCG rate from 2.4 × 10?3 to 3.6 × 10?3 mm/cycle at ΔK = 80 MPam0.5 in the hydrogen-charging range. Microscopic observation showed that the tensile fracture is a combination of overload microvoids and some intergranular regions for 0 h, and isolated areas of transgranular (TG) fracture are observed with brittle cleavage for 24-72 h. The fatigue fracture is ductile for the uncharged specimens, while the hydrogen-charged specimens show mainly brittle TG fracture. These results suggest that hydrogen degrades the fracture behavior of 23Co14Ni12Cr3Mo ultrahigh strength steel.  相似文献   

9.
Texture and tempered condition combined effects on fatigue behavior in an Al-Cu-Li alloy have been investigated using tensile testing, cyclic loading testing, scanning electron microscope (SEM), transmission electron microscopy (TEM) and texture analysis. Results showed that in near-threshold region, T4-tempered samples possessed the lowest fatigue crack propagation (FCP) rate. In Paris regime, T4-tempered sample had similar FCP rate with T6-tempered sample. T83-tempered sample exhibited the greatest FCP rate among the three tempered conditions. 3% pre-stretching in T83-tempered sample resulted in a reducing intensity of Goss texture and facilitated T1 precipitation. SEM results showed that less crack deflection was observed in T83-tempered sample, as compared to other two tempered samples. It was the combined effects of a lower intensity of Goss texture and T1 precipitates retarding the reversible dislocation slipping in the plastic zone ahead the crack tip.  相似文献   

10.
《Acta Materialia》2003,51(7):1841-1855
The fracture behavior at crack tip was analyzed based on: (1) observations of fracture surfaces and measurements of local critical parameters for cleavage of three point bending (3PB) precracked specimens of C-Mn steel, (2) detailed observations of configuration changes at precrack tips by metallographic cross sections in specimens unloaded at various applied loads, (3) sophisticated FEM calculations of distributions of stress, strain and triaxiality and simulations of short cracks initiated and extended at precrack tips. The results show that before a critical load (a critical COD) is reached, the crack tip is only blunted and in its vicinity three criteria for cleavage fracture (ϵpϵpc for initiating a crack nucleus; σm/σe≥Tc for preventing the crack tip from blunting; and σyyσf for propagating the crack) are satisfied in different regions separated from each other, the nucleated cracks cannot be propagated and cleavage fracture cannot be triggered. As the applied load increases higher than this critical load, a short crack is initiated and extended at the precrack tip and then is blunted again. The plastic strain and the stress in front of the precrack are redistributed. While the plastic strain remains in front of the tip, the stress triaxiality is rebuilt. At a second critical load, the regions where the three criteria are satisfied overlap each other and a cleavage crack can be nucleated and propagated. The minimum distance for cleavage may be determined by the beginning of the overlapping of the mentioned regions. Combined with the three criteria previously suggested, the fracture behavior at crack tip and the corresponding changes of driving forces (ϵp, σm/σe,σyy) provide a complete physical model for cleavage of steels in the local scale.  相似文献   

11.
基于模拟焊接热循环试验及疲劳裂纹扩展试验,对动载结构用高强钢Q960E热影响粗晶区进行了多种应力幅值作用下的疲劳寿命研究.通过得到Paris方程建立了不同焊接热模拟工艺下疲劳裂纹扩展门槛值(ΔKth)随不同交变载荷下疲劳寿命值的近似线性关系.利用场发射扫描电镜中背散射衍射功能(EBSD)对疲劳裂纹扩展试样中的裂纹尖端进行了晶体学取向分析及扩展机制讨论.结果表明,在应力幅值ΔP固化后,疲劳寿命N随ΔKth的增大而增加,其延寿微观机理在于组织中的亚结构取向存在差异,所形成的大角度晶界(≥15°)可有效迫使裂纹转向,从而提高材料的疲劳寿命.  相似文献   

12.
《Acta Materialia》2003,51(1):1-15
The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic solid with the lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive rules. The fracture properties are specified through an irreversible cohesive relation. Under monotonic loading conditions, with the applied stress below the yield strength of the uncracked specimen, the initiation of crack growth is found to be governed by the mode-I stress intensity factor, calculated from the applied stress, with the value of Kinit decreasing slightly with crack size due to the reduction in shielding associated with dislocations near a free surface. Under cyclic loading, the fatigue threshold is ΔK-governed for sufficiently long cracks. Below a critical crack size the value of ΔKI at the fatigue threshold is found to decrease substantially with crack size and progressive cyclic crack growth occurs even when Kmax is less than that required for the initiation of crack crack growth in an elastic solid. The reduction in the fatigue threshold with crack size is associated with a progressive increase in internal stress under cyclic loading. However, for sufficiently small cracks, the dislocation structure generated is sparse and the internal stresses and plastic dissipation associated with this structure alone are not sufficient to drive fatigue crack growth.  相似文献   

13.
The effects of changes in test orientation and load ratio on the room temperature fracture and fatigue crack growth behavior of as-cast Ti–48Al–2Nb–2Cr titanium aluminide was investigated to determine the presence of any anisotropy in mechanical properties. As-cast samples were tested in the longitudinal and transverse directions to the casting direction at room temperature in air. Load ratios ranging from R = 0.1 to R = 0.9 were used in the fatigue tests in order to determine its effects on the threshold for fatigue cracking, the Paris law slope, and fatigue crack instability toughness, Kc, in addition to determining both notched and fatigue-precracked values for toughness. Optical metallography and SEM fractography were used to document the effects of orientation on the fracture path and morphology. Significant effects of changes in load ratio were obtained on the fatigue threshold and Paris law slope, while its effects on Kc and the effects of sample orientation were found to be minimal. These are rationalized by considering microstructural effects on the properties measured and are compared to similar materials processed via different techniques.  相似文献   

14.
《Acta Materialia》2002,50(4):831-846
Analyses of the growth of a plane strain crack subject to remote mode I cyclic loading under small-scale yielding are carried out using discrete dislocation dynamics. Cracks along a metal–rigid substrate interface and in a single crystal are studied. The formulation is the same as that used to analyze crack growth under monotonic loading conditions, differing only in the remote stress intensity factor being a cyclic function of time. Plastic deformation is modeled through the motion of edge dislocations in an elastic solid with the lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation being incorporated through a set of constitutive rules. An irreversible relation is specified between the opening traction and the displacement jump across a cohesive surface ahead of the initial crack tip in order to simulate cyclic loading in an oxidizing environment. The cyclic crack growth rate log(da/dN) versus applied stress intensity factor range log(ΔKI) curve that emerges naturally from the solution of the boundary value problem shows distinct threshold and Paris law regimes. Paris law exponents in the range 4 to 8 are obtained for the parameters employed here. Furthermore, rather uniformly spaced slip bands corresponding to surface striations develop in the wakes of the propagating cracks.  相似文献   

15.
Fatigue crack growth behaviors in electron beam weldments of a nickel-base superalloy are. studied. The objective of this paper is to discuss effects of the inhomogeneity of mechanical performance on fatigue crack growth (FCG) rate and crack path deviation (CPD). The base metal served in a turbine disk of aerospace engine was selected to fabricate bead-on-plate weldments by using electron beam welding. Some wedge-type opening loading specimens, notched in three different zone of weld metal, HAZ and base metal, were employed and performed fatigue crack growth tests at 650℃. The results show that the fatigue crack growth of electron beam welded joints is instable due to the influence of mechanical heterogeneities. Owing to the crack deviation at the weld metal and heat-affected-zone (HAZ), the effective growth driving force at the tip of fatigue crack was reduced with the reduction of the effective stress intensity factor (SIF) which finally causes fatigue crack rate decrease. Fatigue crack was strongly affected by size and the symmetrical characteristics of the plastic zone at the crack tip, which means that the integrity of the welded structure containing the fatigue crack mainly depended on the toughness of the low strenqth zone.  相似文献   

16.
《Acta Materialia》2004,52(6):1503-1513
Fatigue crack propagation fracture surface morphologies in nickel-base superalloys vary substantially with changes in loading parameters such as temperature, ΔK, load ratio, frequency, and additionally microstructure. Quantitative fracture surface roughness can vary from sub-micron levels to a maximum value of approximately half the grain size. Atomic Force Microscope studies of surface slip traces in compression specimens revealed a clear relationship between slip homogeneity in compression testing and fracture surface roughness under similar fatigue loading conditions. It has been shown in this study that changes in ΔK, strain level, temperature, grain size, and load ratio can all affect slip heterogeneity, which in turn controls the fracture surface roughness. Finally, a model is developed that quantitatively predicts fracture surface roughness and roughness-induced crack closure stress intensity values from measurements of slip line spacing in a compression specimen.  相似文献   

17.
The mechanisms responsible for the transient retardation or acceleration of fatigue crack growth subsequent to overloading are a matter of intense debate. Plasticity-induced closure and residual stresses have often been invoked to explain these phenomena, but closure mechanisms are disputed, especially under conditions approximating to generalised plane strain. In this paper we exploit synchrotron radiation to report very high spatial resolution two-dimensional elastic strain and stress maps at maximum and minimum loading measured under plane strain during a normal fatigue cycle, as well as during and after a 100% overload event, in ultra-fine grained AA5091 aluminium alloy. These observations provide direct evidence of the material stress state in the vicinity of the crack-tip in thick samples. Significant compressive residual stresses were found both in front of and behind the crack-tip immediately following the overload event. The effective stress intensity at the crack-tip was determined directly from the local stress field measured deep within the bulk (plane strain) by comparison with linear elastic fracture mechanical theory. This agrees well with that nominally applied at maximum load and 100% overload. After overload, however, the stress fields were not well described by classical K fields due to closure-related residual stresses. Little evidence of overload closure was observed sometime after the overload event, in our case possibly because the overload plastic zone was very small.  相似文献   

18.
The fatigue lives of friction stir spot welds in aluminum 6061-T6 lap-shear specimens under cyclic loading conditions are investigated in this paper. The paths of fatigue cracks near friction stir spot welds in lap-shear specimens are first examined. The experimental observations suggest that under cyclic loading conditions, the fatigue crack is initiated near the possible original notch tip in the stir zone and propagates along the circumference of the nugget, then through the sheet thickness and finally grows in the width direction to cause final fracture. A fatigue crack growth model based on the Paris law for crack propagation and the local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of friction stir spot welds. The global and local stress intensity factors are used to estimate the local stress intensity factors of kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.  相似文献   

19.
Previously, we proposed a physical model for hydrogen diffusion and accumulation around the crack tip and performed accurate numerical analysis which takes account of the effects of both hydrogen diffusion and accumulation due to the stress gradient. Based on this analysis, the characteristics of hydrogen accumulation around the crack tip were clarified.Since the characteristics of stress corrosion cracking and corrosion fatigue are dominated by chemical anodic reaction, hydrogen embrittlement and dislocation mechanism, to perform the analysis on the competitive phenomenon by these mechanism and to relate the sensitivity of hydrogen embrittlement to the characteristics of corrosion fatigue, it is necessary to construct a exact physical law on the characteristics of hydrogen diffusion and concentration and to formulate the characteristics as a simple function such as diffusion constant, D, yield stress σys, and stress intensity factor, K. The effect of stress field such as plane strain and plane stress on the hydrogen embrittlement is necessary to be clarified as the effect of specimen thickness on the hydrogen embrittlement.In this paper, based on this view point, the effect of D, σys, and K on hydrogen embrittlement were investigated and formulated. A quantitative parameter which characterize hydrogen embrittlement was proposed for both cases of plane strain and plane stress conditions as the effect of specimen thickness on the hydrogen embrittlement.  相似文献   

20.
Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris’ law. Results show neither Richard’s nor Tanaka’s equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard’s equivalent SIF formula is more suitable than Tanaka’s formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, da/dN increases as K eq decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号