首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper presents a robustly stabilizing model predictive control algorithm for systems with incrementally conic uncertain/nonlinear terms and bounded disturbances. The resulting control input consists of feedforward and feedback components. The feedforward control generates a nominal trajectory from online solution of a finite‐horizon constrained optimal control problem for a nominal system model. The feedback control policy is designed off‐line by utilizing a model of the uncertainty/nonlinearity and establishes invariant ‘state tubes’ around the nominal system trajectories. The entire controller is shown to be robustly stabilizing with a region of attraction composed of the initial states for which the finite‐horizon constrained optimal control problem is feasible for the nominal system. Synthesis of the feedback control policy involves solution of linear matrix inequalities. An illustrative numerical example is provided to demonstrate the control design and the resulting closed‐loop system performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the problem of H fuzzy controller synthesis for a class of discrete‐time nonlinear active fault‐tolerant control systems (AFTCSs) in a stochastic setting. The Takagi and Sugeno (T–S) fuzzy model is employed to exactly represent a nonlinear AFTCS. For this AFTCS, two random processes with Markovian transition characteristics are introduced to model the failure process of system components and the fault detection and isolation (FDI) decision process used to reconfigure the control law, respectively. The random behavior of the FDI process is conditioned on the state of the failure process. A non‐parallel distributed compensation (non‐PDC) scheme is adopted for the design of the fault‐tolerant control laws. The resulting closed‐loop fuzzy system is the one with two Markovian jump parameters. Based on a stochastic fuzzy Lyapunov function (FLF), sufficient conditions for the stochastic stability and H disturbance attenuation of the closed‐loop fuzzy system are first derived. A linear matrix inequality (LMI) approach to the fuzzy control design is then developed. Moreover, a suboptimal fault‐tolerant H fuzzy controller is given in the sense of minimizing the level of disturbance attenuation. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates a novel design method for robust nonfragile proportional‐integral‐derivative (PID) control that is based on the guaranteed cost control (GCC) problem for a class of uncertain discrete‐time stochastic systems with additive gain perturbations. On the basis of linear matrix inequality (LMI), a class of fixed PID controller parameters is obtained, and some sufficient conditions for the existence of the GCC are derived. Although the additive gain perturbations are included in the feedback systems, both the stability of closed‐loop systems and adequate cost bound are attained. As a sequel, decentralized GCC PID for a class of discrete‐time uncertain large‐scale stochastic systems is also considered. Finally, the numerical results demonstrate the efficiency of the proposed controller synthesis. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
This paper proposes the output feedback optimal guaranteed cost controller design method for uncertain piecewise linear systems based on the piecewise quadratic Lyapunov functions technique. By constructing piecewise quadratic Lyapunov functions for the closed‐loop augmented systems, the existence of the guaranteed cost controller for closed‐loop uncertain piecewise linear systems is cast as the feasibility of a set of bilinear matrix inequalities (BMIs). Some of the variables in BMIs are set to be searched by genetic algorithm (GA), then for a given chromosome corresponding to the variables in BMIs, the BMIs turn to be linear matrix inequalities (LMIs), and the corresponding non‐convex optimization problem, which minimizes the upper bound on cost function, reduces to a semidefinite programming (SDP) which is convex and can be solved numerically efficiently with the available software. Thus, the output feedback optimal guaranteed cost controller can be obtained by solving the non‐convex optimization problem using the mixed algorithm that combines GA and SDP. Numerical examples show the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the stabilization problem of the nonlinear networked control systems (NCSs) with drops and variable delays. The NCS is modeled as a sampled‐data system. For such a sampled‐data NCS, the stability properties are studied for delay that can be both shorter and longer than one sampling period, respectively. The exponential stability conditions are derived in terms of the parameters of the plant and time delay. On the other hand, a model‐based control scheme based on an approximate discrete‐time model of the plant is presented to guarantee the stability of the closed‐loop system subject to variable time delays and packet losses. The performance of the proposed control schemes are examined through numerical simulations of an automated rendezvous and docking of spacecraft system. Moreover, the simulations show that by employing the model‐based controller, a higher closed‐loop control performance can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers the boundary control problem for linear stochastic reaction‐diffusion systems with Neumann boundary conditions. First, when the full‐domain system states are accessible, a boundary control is designed, and a sufficient condition is established to ensure the mean‐square exponential stability of the resulting closed‐loop system. Next, when the full‐domain system states are not available, an observer‐based control is proposed such that the underlying closed‐loop system is stable. Furthermore, observer‐based controller is designed for the systems with an H performance. Simulation examples are given to demonstrate the effectiveness and potential of the new design techniques.  相似文献   

7.
This paper considers the problem of guaranteed cost control for uncertain neutral delay systems with a quadratic cost function. The system under consideration is subject to norm‐bounded time‐varying parametric uncertainty appearing in all the matrices of the state‐space model. The problem we address is the design of a state feedback controller such that the closed‐loop system is not only stable but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of guaranteed cost controllers is given in terms of a linear matrix inequality (LMI). When this condition is feasible, the desired state feedback controller gain matrices can be obtained via convex optimization. An illustrative example is provided to demonstrate the effectiveness of the proposed approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the problem of sampled‐data model predictive control (MPC) is investigated for linear networked control systems with both input delay and input saturation. The delay‐induced nonlinearity is overapproximatively modeled as a polytopic inclusion. The nonlinear behavior of input saturation is expressed as a convex polytope. The resulting closed‐loop systems are represented as linear systems with polytopic and additive norm‐bounded uncertainties. The aim is to determine a robust MPC controller that asymptotically stabilizes the uncertain system at the origin with a certain level of quadratic performance. The effectiveness of the proposed algorithm is demonstrated by a numerical example.  相似文献   

9.
Distributed parameter networked control systems mean distributed parameter systems are controlled through a network, where the control loops are closed. In this paper, the problem of guaranteed cost and state feedback controller design is investigated for a class of distributed parameter networked control systems. With the network factors, such as transmission delays, data packet dropouts considered, the distributed parameter networked control system is modeled as a linear closed‐loop system with time‐varying delay and uncertain parameters. By selecting an appropriate Lyapunov‐Krasovskii function and using linear matrix inequality (LMI) approach, the controller is designed to render the system stable and it can keep the cost function less than a certain upper value. In addition, numerical simulation is included to demonstrate the theoretical results.  相似文献   

10.
This paper is concerned with the H control problem for networked control systems (NCSs) with random packet dropouts. The NCS is modeled as a sampled‐data system which involves a continuous plant, a digital controller, an event‐driven holder and network channels. In this model, two types of packet dropouts in the sensor‐to‐controller (S/C) side and controller‐to‐actuator (C/A) side are both considered, and are described by two mutually independent stochastic variables satisfying the Bernoulli binary distribution. By applying an input/output delay approach, the sampled‐data NCS is transformed into a continuous time‐delay system with stochastic parameters. An observer‐based control scheme is designed such that the closed‐loop NCS is stochastically exponentially mean‐square stable and the prescribed H disturbance attenuation level is also achieved. The controller design problem is transformed into a feasibility problem for a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed design method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
This paper extends tube‐based model predictive control of linear systems to achieve robust control of nonlinear systems subject to additive disturbances. A central or reference trajectory is determined by solving a nominal optimal control problem. The local linear controller, employed in tube‐based robust control of linear systems, is replaced by an ancillary model predictive controller that forces the trajectories of the disturbed system to lie in a tube whose center is the reference trajectory thereby enabling robust control of uncertain nonlinear systems to be achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This article presents a switched model reference adaptive controller for discrete‐time piecewise linear systems. In the spirit of the work by Landau in the late seventies, proof of asymptotic stability of the closed‐loop error system is obtained, recasting its dynamics as a feedback system and showing the feedforward and the feedback paths are both passive. The challenge is that both paths can be piecewise linear. Numerical results show excellent performance of the proposed controller even in the face of sudden variations of the plant parameters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper deals with the non‐fragile H control problem for uncertain linear systems. The uncertainties are of a linear fractional form and appear in both the state and control input matrices. The purpose is to design a state feedback controller, which is subject to linear fractional parametric uncertainties, such that the resulting closed‐loop system is quadratically stable with an H norm bound. A sufficient condition for the solvability of the problem is obtained in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed design method. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
We address the distributed model predictive control (MPC) for a set of linear local systems with decoupled dynamics and a coupled global cost function. By the decomposition of the global cost function, the distributed control problem is converted to the MPC for each local system associated with a cost involving neighboring system states and inputs. For each local controller, the infinite horizon control moves are parameterized as N free control moves followed by a single state feedback law. An interacting compatibility condition is derived, disassembled and incorporated into the design of each local control so as to achieve the stability of the global closed‐loop system. Each local system exchanges with its neighbors the current states and the previous optimal control strategies. The global closed‐loop system is shown to be exponentially stable provided that all the local optimizers are feasible at the initial time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates the problem of designing robust linear quadratic regulators for uncertain polytopic continuous‐time systems over networks subject to delays. The main contribution is to provide a procedure to determine a discrete‐time representation of the weighting matrices associated to the quadratic criterion and an accurate discretized model, in such a way that a robust state feedback gain computed in the discrete‐time domain assures a guaranteed quadratic cost to the closed‐loop continuous‐time system. The obtained discretized model has matrices with polynomial dependence on the uncertain parameters and an additive norm‐bounded term representing the approximation residual error. A strategy based on linear matrix inequality relaxations is proposed to synthesize, in the discrete‐time domain, a digital robust state feedback control law that stabilizes the original continuous‐time system assuring an upper bound to the quadratic cost of the closed‐loop system. The applicability of the proposed design method is illustrated through a numerical experiment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we present a robust fault‐tolerant control scheme for constrained multisensor linear parameter‐varying systems, subject to bounded disturbances, that utilises multiple sensor fusion. The closed‐loop scheme consists of a tube model predictive control‐based feedback tracking controller and sensor‐estimate fusion strategy, which allows for the reintegration of previously faulty sensors. The active fault‐tolerant fusion‐based mechanism tracks the healthy‐faulty transitions of suitable residual variables by means of set separation and precomputed transition times. The sensor‐estimate pairings are then reconfigured based on available healthy sensors. Under the proposed scheme, robust preservation of closed‐loop system boundedness is guaranteed for a wide range of sensor fault situations. An example is presented to illustrate the performance of the fault‐tolerant control strategy.  相似文献   

17.
This paper investigates the non‐fragile robust control problem for a class of nonlinear networked control systems (NCSs) with long time‐varying delay. Both the uncertain nonlinearity and the controller gain fluctuation enter into the system in random ways, and such randomly occurring nonlinearity and randomly occurring controller gain fluctuation obey certain mutually uncorrelated Bernoulli distributed white noise sequences. A new time‐varying discrete time system model is proposed to describe the NCS. To reduce conservatism arising from modeling time‐varying parts, the time‐varying parts due to the time‐varying delay are treated as a norm‐bounded uncertainty with one nominal point using robust control techniques. Based on the obtained uncertain system model, a regular and an optimal sufficient non‐fragile controllers are derived by applying the Lyapunov stability theory and the linear matrix inequality technique, which render the closed‐loop NCS to be asymptotically stable and guarantee an upper bound of the given performance cost for all admissible uncertainties. Moreover, the existence condition and design method for the non‐fragile stabilizing controllers are also presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
For systems with switched linear dynamics and affected by persistent switched exosignals, we propose a new hybrid control approach to achieve not only closed‐loop stability but also tracking and/or rejection of persistent references/disturbances generated by multiple exosystems, namely, output regulation. It is assumed that both controlled plant and exosystem are described by switched linear models. The proposed hybrid controller/output regulator is specified as a switching impulsive system, where the controller states will undergo impulsive jumps at each switching instant. Based on the average dwell time switching technique, it has been shown how to completely reduce the synthesis problem of the hybrid controller to a set of linear matrix equations and linear matrix inequalities. Both continuous‐time and discrete‐time cases are discussed. To demonstrate its usefulness, the proposed hybrid control method has been applied to solve the output regulation problem for a mechanical system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the design of a robust control for linear systems with external disturbances using a homogeneous differentiator‐based observer based on a implicit Lyapunov function approach. Sufficient conditions for stability of the closed‐loop system in the presence of external disturbances are obtained and represented by linear matrix inequalities. The parameter tuning for both controller and observer is formulated as a semi‐definite programming problem with linear matrix inequalities constraints. Simulation results illustrate the feasibility of the proposed approach and some improvements with respect to the classic linear observer approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper considers the problem of output‐feedback‐guaranteed cost controller design for uncertain time‐delay systems. The uncertainty in the system is assumed to be norm‐bounded and time‐varying. The time‐delay is allowed to enter the state and the measurement equations. A linear quadratic cost function is considered as a performance measure for the closed‐loop system. Necessary and sufficient conditions are provided for the construction of a guaranteed cost controller. These conditions are given in terms of the feasibility of LMIs which depend on a positive definite matrix and a scaling variable. A numerical algorithm is developed to search for a full order dynamic output‐feedback controller which minimizes the cost bound. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号