首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic nanoscale motors represent a major step in the development of practical nanomachines. This Review summarizes recent progress towards controlling the movement of fuel‐driven nanomotors and discusses the challenges and opportunities associated with the achievement of such nanoscale motion control. Regulating the movement of artificial nanomotors often follows nature's elegant and remarkable approach for motion control. Such on‐demand control of the movement of artificial nanomotors is essential for performing various tasks and diverse applications. These applications require precise control of the nanomotor direction as well as temporal and spatial regulation of the motor speed. Different approaches for controlling the motion of catalytic nanomotors have been developed recently, including magnetic guidance, thermally driven acceleration, an electrochemical switch, and chemical stimuli (including control of the fuel concentration). Such ability to control the directionality of artificial nanomotors and to regulate their speed offers considerable promise for designing powerful nanomachines capable of operating independently and meeting a wide variety of future technological needs.  相似文献   

2.
Micro‐/nanomotors are widely used in micro‐/nanoprocessing, cargo transportation, and other microscale tasks because of their ability to move independently. Many biological hybrid motors based on bacteria have been developed. Magnetotactic bacteria (MTB) have been employed as motors in biological systems because of their good biocompatibility and magnetotactic motion in magnetic fields. However, the magnetotaxis of MTB is difficult to control due to the lack of effective methods. Herein, a strategy that enables control over the motion of MTB is presented. By depositing synthetic Fe3O4 magnetic nanoparticles on the surface of MTB, semiartificial magnetotactic bacteria (SAMTB) are produced. The overall magnetic properties of SAMTB, including saturation magnetization, residual magnetization, and blocking temperature, are regulated in a multivariate and multilevel fashion, thus regulating the magnetic sensitivity of SAMTB. This strategy provides a feasible method to manoeuvre MTB for applications in complex fluid environments, such as magnetic drug release systems and real‐time tracking systems. Furthermore, this concept and methodology provide a paradigm for controlling the mobility of micro‐/nanomotors based on natural small organisms.  相似文献   

3.
Inspired by the swimming of natural microorganisms, synthetic micro‐/nanomachines, which convert energy into movement, are able to mimic the function of these amazing natural systems and help humanity by completing environmental and biological tasks. While offering autonomous propulsion, conventional micro‐/nanomachines usually rely on the decomposition of external chemical fuels (e.g., H2O2), which greatly hinders their applications in biologically relevant media. Recent developments have resulted in various micro‐/nanomotors that can be powered by biocompatible fuels. Fuel‐free synthetic micro‐/nanomotors, which can move without external chemical fuels, represent another attractive solution for practical applications owing to their biocompatibility and sustainability. Here, recent developments on fuel‐free micro‐/nanomotors (powered by various external stimuli such as light, magnetic, electric, or ultrasonic fields) are summarized, ranging from fabrication to propulsion mechanisms. The applications of these fuel‐free micro‐/nanomotors are also discussed, including nanopatterning, targeted drug/gene delivery, cell manipulation, and precision nanosurgery. With continuous innovation, future autonomous, intelligent and multifunctional fuel‐free micro‐/nanomachines are expected to have a profound impact upon diverse biomedical applications, providing unlimited opportunities beyond one's imagination.  相似文献   

4.
The combination of bottom‐up controllable self‐assembly technique with bioinspired design has opened new horizons in the development of self‐propelled synthetic micro/nanomotors. Over the past five years, a significant advances toward the construction of bioinspired self‐propelled micro/nanomotors has been witnessed based on the controlled self‐assembly technique. Such a strategy permits the realization of autonomously synthetic motors with engineering features, such as sizes, shapes, composition, propulsion mechanism, and function. The construction, propulsion mechanism, and movement control of synthetic micro/nanomotors in connection with controlled self‐assembly in recent research activities are summarized. These assembled nanomotors are expected to have a tremendous impact on current artificial nanomachines in future and hold potential promise for biomedical applications including drug targeted delivery, photothermal cancer therapy, biodetoxification, treatment of atherosclerosis, artificial insemination, crushing kidney stones, cleaning wounds, and removing blood clots and parasites.  相似文献   

5.
Nature's nanomachines, built of dynamically integrated biochemical components, powered by energy‐rich biochemical processes, and designed to perform a useful task, have evolved over millions of years. They provide the foundation of all living systems on our planet today. Yet synthetic nanomotors, driven by simple chemical reactions and which could function as building blocks for synthetic nanomachines that can perform useful tasks, have been discovered only in the last few years. Why did it take so long to power‐up a myriad of synthetic nanostructures from their well‐known static states to new and exciting dynamic ones of the kind that abound in nature? This article will delve into this disconnect between the world of biological and abiological nanomotors, then take a look at some recent developments involving chemically powered nanoscale motors and rotors, and finally try to imagine: what's next for nanolocomotion?  相似文献   

6.
Autonomous micro- and nanomotors should, in principle, deliver materials in a site-directed fashion, powering the assembly of dynamic, nonequilibrium superstructures. Here we demonstrate that catalytic Pt-Au nanomotors can transport a prototypical cargo: polystyrene microspheres. In addition, motors with Ni segments can overcome both Brownian orientational fluctuations and biased rotation of the rod-sphere doublet to enable persistent steerable uniaxial motion in an external magnetic field. Assuming a cargo-independent motive force, the speeds are inversely proportional to the Stokes resistance, which we compute using a completed double-layer boundary integral equation. In addition, we demonstrate motors transporting cargo via chemotaxis toward a H2O2 fuel source.  相似文献   

7.
Ultrasound (US)‐powered nanowire motors based on nanoporous gold segment are developed for increasing the drug loading capacity. The new highly porous nanomotors are characterized with a tunable pore size, high surface area, and high capacity for the drug payload. These nanowire motors are prepared by template membrane deposition of a silver‐gold alloy segment followed by dealloying the silver component. The drug doxorubicin (DOX) is loaded within the nanopores via electrostatic interactions with an anionic polymeric coating. The nanoporous gold structure also facilitates the near‐infrared (NIR) light controlled release of the drug through photothermal effects. Ultrasound‐driven transport of the loaded drug toward cancer cells followed by NIR‐light triggered release is illustrated. The incorporation of the nanoporous gold segment leads to a nearly 20‐fold increase in the active surface area compared to common gold nanowire motors. It is envisioned that such US‐powered nanomotors could provide a new approach to rapidly and efficiently deliver large therapeutic payloads in a target‐specific manner.  相似文献   

8.
Light‐driven micro/nanomotors are promising candidates for long‐envisioned next‐generation nanorobotics for targeted drug delivery, noninvasive surgery, nanofabrication, and beyond. To achieve these fantastic applications, effective control of the micro/nanomotor is essential. Light has been proved as the most versatile method for microswimmer manipulation, while the light propagation direction, intensity, and wavelength have been explored as controlling signals for light‐responsive nanomotors. Here, the controlling method is expanded to the polarization state of the light, and a nanomotor with a significant dichroic ratio is demonstrated. Due to the anisotropic crystal structure, light polarized parallel to the Sb2Se3 nanowires is preferentially absorbed. The core–shell Sb2Se3/ZnO nanomotor exhibits strong dichroic swimming behavior: the swimming speed is ≈3 times faster when illuminated with parallel polarized light than perpendicular polarized light. Furthermore, by incorporating two cross‐aligned dichroic nanomotors, a polarotactic artificial microswimmer is achieved, which can be navigated by controlling the polarization direction of the incident light. Compared to the well‐studied light‐driven rotary motors based on optical tweezers, this dichroic microswimmer offers eight orders of magnitude light‐intensity reduction, which may enable large‐scale nanomanipulation as well as other heat‐sensitive applications.  相似文献   

9.
Inspired by the self‐migration of microorganisms in nature, artificial micro‐ and nanomotors can mimic this fantastic behavior by converting chemical fuel or external energy into mechanical motion. These self‐propelled micro‐ and nanomotors, designed either by top‐down or bottom‐up approaches, are able to achieve different applications, such as environmental remediation, sensing, cargo/sperm transportation, drug delivery, and even precision micro‐/nanosurgery. For these various applications, especially biomedical applications, regulating on‐demand the motion of micro‐ and nanomotors is quite essential. However, it remains a continuing challenge to increase the controllability over motors themselves. Here, we will discuss the recent advancements regarding the motion manipulation of micro‐ and nanomotors by different approaches.  相似文献   

10.
Micro/nanomotors (MNMs) have emerged as active micro/nanoplatforms that can move and perform functions at small scales. Much of their success, however, hinges on the use of functional properties of new materials. Liquid metals (LMs), due to their good electrical conductivity, biocompatibility, and flexibility, have attracted considerable attentions in the fields of flexible electronics, biomedicine, and soft robotics. The design and construction of LM‐based motors is therefore a research topic with tremendous prospects, however current approaches are mostly limited to macroscales. Here, the fabrication of an LM‐MNM (made of Galinstan, a gallium–indium–tin alloy) is reported and its potential application as an on‐demand, self‐targeting welding filler is demonstrated. These LM‐MNMs (as small as a few hundred nanometers) are half‐coated with a thin layer of platinum (Pt) and move in H2O2 via self‐electrophoresis. In addition, the LM‐MNMs roaming in a silver nanowire network can move along the nanowires and accumulate at the contact junctions where they become fluidic and achieve junction microwelding at room temperature by reacting with acid vapor. This work presents an intelligent and soft nanorobot capable of repairing circuits by welding at small scales, thus extending the pool of available self‐propelled MNMs and introducing new applications.  相似文献   

11.
Self‐organized catalytic nanomotors consisting of more than one individual component are presented. Tadpole‐like catalytic nanomotors fabricated by dynamic shadowing growth (DSG) self‐organize randomly to form two‐nanomotor clusters (≈1–3% yield) that spin as opposed to circular motion exhibited by the individual structures. By introducing magnetic materials to another system, self‐assembled “helicopter” nanomotors consisting of a V‐shaped nanomotor and a microbead are formed with ≈25% yield, showing a significantly higher yield than the control (0%). A flexible swimmer system that performs complex swimming, such as maneuvering around stationary objects, is also presented. These nanomotor systems are inherently more complex than those previously studied and may be the next step towards building sophisticated multifunctional nanomachinery systems.  相似文献   

12.
Inspired by the highly versatile natural motors, artificial micro‐/nanomotors that can convert surrounding energies into mechanical motion and accomplish multiple tasks are devised. In the past few years, micro‐/nanomotors have demonstrated significant potential in biomedicine. However, the practical biomedical applications of these small‐scale devices are still at an infant stage. For successful bench‐to‐bed translation, biocompatibility of micro‐/nanomotor systems is the central issue to be considered. Herein, the recent progress in micro‐/nanomotors in biocompatibility is reviewed, with a special focus on their biomedical applications. Through close collaboration between researches in the nanoengineering, material chemistry, and biomedical fields, it is expected that a promising real‐world application platform based on micro‐/nanomotors will emerge in the near future.  相似文献   

13.
Fuel-free nanomotors are essential for future in-vivo biomedical transport and drug-delivery applications. Herein, the first example of directed delivery of drug-loaded magnetic polymeric particles using magnetically driven flexible nanoswimmers is described. It is demonstrated that flexible magnetic nickel-silver nanoswimmers (5-6 μm in length and 200 nm in diameter) are able to transport micrometer particles at high speeds of more than 10 μm s(-1) (more than 0.2 body lengths per revolution in dimensionless speed). The fundamental mechanism of the cargo-towing ability of these magnetic (fuel-free) nanowire motors is modelled, and the hydrodynamic features of these cargo-loaded motors discussed. The effect of the cargo size on swimming performance is evaluated experimentally and compared to a theoretical model, emphasizing the interplay between hydrodynamic drag forces and boundary actuation. The latter leads to an unusual increase of the propulsion speed at an intermediate particle size. Potential applications of these cargo-towing nanoswimmers are demonstrated by using the directed delivery of drug-loaded microparticles to HeLa cancer cells in biological media. Transport of the drug carriers through a microchannel from the pick-up zone to the release microwell is further illustrated. It is expected that magnetically driven nanoswimmers will provide a new approach for the rapid delivery of target-specific drug carriers to predetermined destinations.  相似文献   

14.
Aref T  Bezryadin A 《Nanotechnology》2011,22(39):395302
We present a method for in situ tuning of the critical current (or switching current) and critical temperature of a superconducting MoGe nanowire using high bias voltage pulses. Our main finding is that as the pulse voltage is increased, the nanowire demonstrates a reduction, a minimum and then an enhancement of the switching current and critical temperature. Using controlled pulsing, the switching current of a superconducting nanowire can be set exactly to a desired value. These results correlate with in situ transmission electron microscope imaging where an initially amorphous nanowire transforms into a single crystal nanowire by high bias voltage pulses. We compare our transport measurements to a thermally activated model of Little's phase slips in nanowires.  相似文献   

15.
Self‐propelled micromachines have recently attracted lots of attention for environmental remediation. Developing a large‐scale but template‐free fabrication of self‐propelled rod/tubular micro/nanomotors is very crucial but still challenging. Here, a new strategy based on vertically aligned ZnO arrays is employed for the large‐scale and template‐free fabrication of self‐propelled ZnO‐based micromotors with H2O2‐free light‐driven propulsion ability. Brush‐shaped ZnO‐based micromotors with different diameters and lengths are fully studied, which present a fast response to multicycles UV light on/off switches with different interval times (2/5 s) in pure water and slow directional motion in aqueous hydrogen peroxide solution in the absence of UV light. Light‐induced electrophoretic and self‐diffusiophoretic effects are responsible for these two different self‐motion behaviors under different conditions, respectively. In addition, the pH of the media and the presence of H2O2 show important effects on the motion behavior and microstructure of the ZnO‐based micromotors. Finally, these novel ZnO‐based brush‐shaped micromotors are demonstrated in a proof‐of‐concept study on nitroaromatic explosive degradation, i.e., picric acid. This work opens a completely new avenue for the template‐free fabrication of brush‐shaped light‐responsive micromotors on a large scale based on vertically aligned ZnO arrays.  相似文献   

16.
Catalytic nanomotors are nano-to-micrometer-sized actuators that carry an on-board catalyst and convert local chemical fuel in solution into mechanical work. The location of this catalyst as well as the geometry of the structure dictate the swimming behaviors exhibited. The nanomotors can occur naturally in organic molecules, combine natural and artificial parts to form hybrid nanomotors or be purely artificial. Fabrication techniques consist of template directed electroplating, lithography, physical vapor deposition, and other advanced growth methods. Various physical and chemical propulsion mechanisms have been proposed to explain the motion behaviors including diffusiophoresis, bubble propulsion, interfacial tension gradients, and self-electropho-resis. The control and manipulation based upon external fields, catalytic alloys, and motion control through thermal modulation are discussed as well. Catalytic nanomotors represent an exciting technological challenge with the end goal being practical functional nanomachines that can perform a variety of tasks at the nanoscale.  相似文献   

17.
Prereduction of transition metal oxides is a feasible and efficient strategy to enhance their catalytic activity for hydrogen evolution. Unfortunately, the prereduction via the common H2 annealing method is unstable for nanomaterials during the hydrogen evolution process. Here, using NiMoO4 nanowire arrays as the example, it is demonstrated that carbon plasma (C‐plasma) treatment can greatly enhance both the catalytic activity and the long‐term stability of transition metal oxides for hydrogen evolution. The C‐plasma treatment has two functions at the same time: it induces partial surface reduction of the NiMoO4 nanowire to form Ni4Mo nanoclusters, and simultaneously deposits a thin graphitic carbon shell. As a result, the C‐plasma treated NiMoO4 can maintain its array morphology, chemical composition, and catalytic activity during long‐term intermittent hydrogen evolution process. This work may pave a new way for simultaneous activation and stabilization of transition metal oxide‐based electrocatalysts.  相似文献   

18.
DNA nanotechnology enables the precise fabrication of DNA‐based machines with nanoscale dimensions. A wide range of DNA nanomachines are designed, which can be activated by specific inputs to perform various movement and functions. The excellent rigidity and unprecedented addressability of DNA origami have made it an excellent platform for manipulating and investigating the motion behaviors of DNA machines at single‐molecule level. In this Concept, power supply, machine actuation, and motion behavior of DNA machines on origami platforms are summarized and classified. The strategies utilized for programming motion behavior of DNA machines on DNA origami are also discussed with representative examples. The challenges and outlook for future development of manipulating DNA nanomachines at the single molecule level are presented and discussed.  相似文献   

19.
Self‐propelled micro/nanomotors have gained attention for successful application in cargo delivery, therapeutic treatments, sensing, and environmental remediation. Unique characteristics such as high speed, motion control, selectivity, and functionability promote the application of micro/nanomotors in analytical sciences. Here, the recent advancements and main challenges regarding the application of self‐propelled micro/nanomotors in sensing and environmental remediation are discussed. The current state of micro/nanomotors is reviewed, emphasizing the period of the last five years, then their developments into the future applications for enhanced sensing and efficient purification of water resources are extrapolated.  相似文献   

20.
Electromagnetic energy radiation is becoming a “health‐killer” of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat‐generation and temperature‐rising with performance degradation remain big problems. Herein, graphene‐silica xerogel is dissected hierarchically from functions to “genes,” thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of “material genes sequencing” is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self‐powered and self‐circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with “well‐sequencing genes” (w = Pc/Pp > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self‐powered and self‐circulated electromagnetic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号