首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-healing microcapsules can be buried in the coating to improve the anticorrosive ability. In this paper,self-healing microcapsules of polyurea(PU)/melamine resin(MF) double shell were prepared by in-situ polymerization and interfacial polymerization with isocyanate as the core material. Scanning electron microscope was used to observe the microcapsule morphology. The structures of microcapsules prepared with different chain extenders were characterized by Fourier transform infrared spectroscopy. The micromanipulation system was used to loading–holding, loading–unloading and loading to rupture individual microcapsules, so as to explore the mechanical properties of microcapsules. The Young's modulus corresponding to microcapsules was calculated by mathematical model fitting. The self-healing properties of microcapsule coating were characterized by optical microscope. The experimental results showed that the microcapsule shell prepared under optimized conditions had a complete morphology and good mechanical properties. The microcapsule was in the elastic deformation stage under small deformation, and the plastic deformation stage under large deformation. The Young's modulus range of microcapsules was 9.29–14.51 MPa, and the corresponding Young's modulus could be prepared by adjusting the process. The surface crack of the coating containing microcapsule could heal itself after48 h in a humid environment.  相似文献   

2.
The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.  相似文献   

3.
Perovskite-type V-doped titanium-bearing blast furnace slag (VTBBFS) photocatalyst was prepared by high-temperature solid phase method.The influence of calcination temperature on the photocatalytic and antibacterial properties of VTBBFS was studied in details.Its composition and microstructure were evaluated by X-ray diffractometer,ultraviolet-visible absorption spectrometer,Fourier transform infrared spectrometer and scanning electron microscope.The antibacterial properties of VTBBFS to Candida albicans were investigated by flask oscillation method.The results showed that the optical absorption and antibacterial properties of VTBBFS were the best with 10%(ω) doping of vanadium,prepared at 800℃ for 2 h,and its sterilization rate was close to 100% to Candida albicans (ATCC10231).The minimum inhibitory and minimum bactericidal concentrations were 25 and 50 mg/mL.When the concentration was 0.2 μg/mL,the catalyst had the least toxic toxicity.  相似文献   

4.
Highly oriented graphite-based composites have attracted great attention because of their high thermal conductivity(TC),but the low mechanical properties caused by the inhomogeneous distribution and discontinuity of reinforcements restrict the wide applications.Herein,continuous SiC ceramic skeleton reinforced highly oriented graphite flake(SiC/GF)composites were successfully prepared by combining vacuum filtration and spark plasma sintering.The effect of SiC concentration on the microstructure,flexural strength,and thermophysical properties of the composites was investigated.The GF grains in the composites exhibited high orientation with a Lotgering factor of>88%when the SiC concentration was≤30 wt%,and the SiC skeleton became continuous with the SiC concentration reaching 20 wt%.The formation of continuous SiC skeleton improved the flexural strength of the composites effectively while keeping the TC in a high level.Especially,the composites with 30 wt%SiC exhibited the flexural strength up to 105 MPa,and the specific TC reaching 0.118 W·m2·K−1·kg-1.The composites with excellent flexural strength and thermophysical properties showed significant promise for thermal management applications.  相似文献   

5.
Differential heat of absorption of CO_2 in aqueous solutions of N,N-diethylethanolamine(DEEA) and activated DEEA solutions up to a total concentration of 2 mol·L~(-1) was measured as a function of CO_2 loading at 313.15 K using a reaction calorimeter. In order to analyze the performance of N-methyl-1,3-propanediamine(MAPA)as an activator, DEEA blended solutions containing 0.05, 0.1 and 0.2 mol·L~(-1) MAPA were studied. The heat of CO_2 absorption in single DEEA solutions was unaffected by changing the DEEA concentration in the range of(0.5–2) mol·L~(-1). On the other hand, increasing the concentration of MAPA in aqueous amine mixtures of(DEEA + MAPA) raised the heat of absorption.  相似文献   

6.
A series of nanorod-like porous Pd/γ-Al_2 O_3 catalysts with controllable textural properties and enhanced catalytic performance in 2-ethyl-9,10-anthraquinone(eAQ) hydrogenation for H_2 O_2 preparation were successfully prepared via a facile sol-gel method using aluminum isopropoxide as aluminum precursor and eAQ as structure directing agent,sequential calcination and impregnation process with Na_2 PdCl_4 solution.The physicochemical properties of the catalysts obtained with different addition amounts of eAQ.were comparatively characterized by XRD,TG-DSC,BET,TEM,CO-TPR,H_2-TPR and H_2-O_2 titration.The results show that addition of eAQ can not only effectively control the textural properties(surface area,pore volume and average pore size) of the catalysts,but also lower their reduction temperature of active metal.Importantly,the catalyst obtained with an addition amount of 4 wt% eAQ shows the highest hydrogenation efficiency of 10.28 g·L~(-1),which is 37.3% higher than 7.49 g·L~(-1) of the catalyst obtained without eAQ.  相似文献   

7.
CePO_4(in particular,monoclinic CePO_4)has been rarely used to make supported catalysts.Herein,monoclinic CePO_4 nanoparticles were prepared by calcining hexagonal CePO_4 nanorods(prepared by precipitation)in air at 900℃.Monoclinic CePO_4 nanowires were prepared by calcining hexagonal CePO_4 nanowires(prepared by hydrothermal synthesis at 150℃)in air at 900℃.Both monoclinic CePO_4 materials were used to support Rh_2O_3 by impregnation using Rh(NO_3)_3 as a precursor(followed by calcination).The catalytic performance of Rh_2O_3/monoclinic CePO_4 composite materials in N_2O decomposition and CO oxidation was investigated.It was found that Rh_2O_3 supported on monoclinic CePO_4 nanowires was much more active than Rh_2O_3 supported on monoclinic CePO_4 nanoparticles.The stability of catalysts as a function of reaction time on stream was studied in both reactions.The influence of co-fed CO_2,O_2,and H_2O on the catalytic activity in N_2O decomposition was also studied.These catalysts were characterized by employing N_2 adsorption–desorption,ICP-OES,XRD,TEM,XPS,H_2-TPR,O_2-TPD,and CO_2-TPD.The correlation between physicochemical properties and catalytic properties was discussed.  相似文献   

8.
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.  相似文献   

9.
In this work, the snail shell/hydroxyapatite/chitosan composite was prepared as adsorbent. The adsorption potential of the composite was studied for simultaneous sorption behavior of Zn(Ⅱ) and Cu(Ⅱ) ions in a batch system. Chitosan and hydroxyapatite(HAP) were extracted from shrimp shell and bone ash,respectively, so this is a low cost natural composite. To prepare the composite, chitosan was dissolved in acetic acid, then HAP and snail shell powders were added to the chitosan solution. The morphology and characterization of the composite was studied by SEM and EDX analysis. Atomic adsorption was used to measure the amount of the ions. Experimental parameters were optimized with Design Expert Software and five parameters such as the concentration of ions, p H, adsorbent amount and contact time were studied at room temperature. Optimized value for the parameters of Zn(Ⅱ) and Cu(Ⅱ) concentrations, p H, adsorbent dose, and contact time were 3.01 mg·L~(-1), 5.5, 0.02 g and 95 min, respectively. The adsorption isotherms for Zn(Ⅱ) and Cu(Ⅱ) showed Langmuir and Tempkin, respectively. Kinetic and equilibrium studies showed the experimental data of Zn(Ⅱ) and Cu(Ⅱ) ions were best described by the pseudo-second-order model. Studies on thermodynamic show the adsorption process were physical and spontaneous.  相似文献   

10.
The physicochemical properties, including the density, viscosity, and refractive index of aqueous solutions of sodium glycinate as a solvent for CO2 absorption in the non-precipitation regime were measured under the wide temperature range of 298.15 to 343.15 K. The concentration of the sodium glycinate in an aqueous form in the non-precipitation regime was identified up to 2.0 mol·L?1. The coefficients of thermal expansion values were estimated from measured density data. It was found that, the densities, viscosities and refractive indices of the aqueous sodium glycinate decrease with an increase in temperature, whereas with increasing sodium glycinate concentration in the solution, all three properties increase. Thermal expansion coefficients slightly increase with rising temperature and concentration. The measured values of density, viscosity and refractive index were correlated as a function of temperature by using the least squares method. The predicted data obtained from correlation equations for all measured properties were in fairly good agreement with the experimental data.  相似文献   

11.
Supermacroporous composite cryogels embedded with SiO2 nanoparticles were prepared by radical cryogenic copolymerization of the reactive monomer mixture of acrylamide(AAm) and N,N-methylene-bis-acrylamide(MBAAm) containing SiO2 nanoparticles(mass ratios of nanoparticles to the monomer AAm from 0.01 to 0.08) under the freezing-temperature variation condition in glass columns.The properties of these composite cryogels were measured.The height equivalent to theoretical plate(HETP) of the cryogel beds at different liquid flow rates was determined by residence time distribution(RTD) using tracer pulse-response method.The composite cryogel matrix embedded with the mass fraction of SiO2 nanoparticles of 0.02 presented the best properties and was employed in the following graft polymerization.Chromatographic process of lysozyme in the composite cryogel grafted with 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPSA) was carried out to evaluate the protein breakthrough and elution characteristics.The chromatography can be carried out at relatively high superficial velocity,i.e.,15 cm·min-1,indicating the satisfactory mechanical strength due to the embedded nanoparticles.  相似文献   

12.
Griseofulvin (GF) is an antifungal drug whose pharmaceutical activity can be improved by reducing particle size. In this study the rapid expansion of supercritical solution (RESS) was employed to micronize GF.Carbon dioxide with cosolvent acetone was chosen as a supercritical mixed solvent. The solubility of GF in super-critical CO2 with cosolvent acetone was measured using a dynamic apparatus at pressures between 12 and 32 MPa,temperatures at 313, 323 and 333 K and cosolvent concentration at 1.5, 3.0, 4.5 and 6.0% (by mole). The effect of pre-expansion pressure, extraction temperature, spraying distance, nozzle size and concentration of cosolvent on the precipitated particles was investigated. The results show that the mean particle size of griseofulvin precipitated by RESS was less than 1.2μm. An increase in pre-expansion pressure, extraction temperature, spraying distance and concentration of cosolvent resulted in a decrease in particle size under the operating condition studied. With the decrease of nozzle diameter the particle size reduces. The crystallinity and melting point of the original material and the processed particle by RESS were tested by X-ray diffraction (XRD) and differential scanning calorimetry (DSC).No evident modification in the crystal habit was found under the experimental conditions tested. The morphology of particles precipitated was analyzed bY scanning electron microscopy (SEM).  相似文献   

13.
By varying concentration of PEG1000 as a structure-directing agent,mesoporous alumina with excellent textural properties was synthesized.The prepared mesoporous alumina displays high thermal stability,as shown by its textural properties at different calcination temperatures of 600-850 °C.Characterization by SEM and TEM revealed that the added PEG surfactant induced the formation of petal-like alumina.XRD results clarified that all samples were amorphous and their peaks were around the peaks of γ-alumina.N_2 adsorption-desorption analysis showed that the prepared mesoporous alumina,if with PEG1000 in hydrolysis of aluminum isopropoxide,had excellent textural properties with large specific surface area,high pore volume and suitable pore size.The petal-like structure existing in the alumina samples improved their textural parameters,and the role and influential mechanism of PEG1000 were analyzed.  相似文献   

14.
The V2O5-WO3-MoO3/TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM) and mercury porosimetry. The NOx conversion and durability were investigated on a pilot plant test set under the actual operational conditions of a coal fired boiler. The catalyst monolith had good formability with mass percentage of V:W:Mo:TiO2 :fiber glass= 1:4.5:4.5:72:18. Vanadium, tungsten and molybdenum species were highly dispersed on anatase TiO2 without causing the transformation of anatase TiO2 to rutile by calcining under a current of air at 450℃ for 4.5 h, but there were some degrees of crystal distortion. The catalyst particle sizes were almost uniform with close pile-up and the pore structure was regular with complete macro-pore formation and large specific surface area. The NOx conversion was sensitive to temperature but nearly insensitive to NH3 . The catalyst showed strong adaptability to NOx concentration with activity above 80% in the range of 615-1640 mg·m-3 . Within the range of 720-8640 h continuous operation, the NOx conversion dropped at a rate of about 1% reduction per 600 h.  相似文献   

15.
Si3N4ceramics were prepared by pressureless sintering at 1 650 ℃ in nitrogen atmosphere using Si3N4powder as main starting material and adding nanoAl2O3powder( 3%,6%,9%,12%,and 15% in mass,the same hereinafter). The bending strength and fracture toughness( KIC) of the specimens were detected.The microstructure and phase compositions of the specimens were analyzed. The results show that Si3N4ceramics can be prepared by pressureless sintering when adding9%- 12% nano-Al2O3as active reactant,which dissolves in Si3N4,in-situ forming non-oxide SiAlON. The obtained Si3N4ceramics have the maximum bending strength of 710. 86 MPa and KICof 8. 61 MPa·m1 /2.The excellent properties come from many interwoven structures distributed uniformly in the ceramics matrix,which is composed of big and firm plate-like β-Si3N4,hexagonal SiAlON and sheet Si2N2O.  相似文献   

16.
Diblock copolymer poly(ethylene glycol) methyl ether-polylactide (MePEG-PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051 mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEG-PLA micelles and IMC loaded MePEG-PLA micelles in number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. Transmission electron microscope and scanning electron microscope observation showed that the appearance of MePEG-PLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18 wt.%. The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.  相似文献   

17.
Functionalized ionic liquids containing ethyoxyl groups were synthesized and immobilized on magnetic silica nanoparticles(MSNP) prepared by two steps,i.e.,Fe3O4 synthesis and silica shell growth on the surface.This magnetic nanoparticle supported ionic liquid(MNP-IL) were applied in the immobilization of penicillin G acylase(PGA).The MSNPs and MNP-ILs were characterized by the means of Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM).The results showed that the average size of magnetic Fe3O4 nanoparticles and MSNPs were ~10 and ~90 nm,respectively.The saturation magnetizations of magnetic Fe3O4 nanoparticles and MNP-ILs were 63.7 and 26.9 A?m2?kg?1,respectively.The MNP-IL was successfully applied in the immobilization of PGA.The maximum amount of loaded enzyme was about 209 mg?g?1(based on carrier),and the highest enzyme activity of immobilized PGA(based on ImPGA) was 261 U?g?1.Both the amount of loaded enzyme and the activity of ImPGA are at the same level of or higher than that in previous reports.After 10 consecutive operations,ImPGA still main-tained 62% of its initial activity,indicating the good recovery property of ImPGA activity.The ionic liquid modified magnetic particles integrate the magnetic properties of Fe3O4 and the structure-tunable properties of ionic liquids,and have extensive potential uses in protein immobilization and magnetic bioseparation.This work may open up a novel strategy to immobilize proteins by ionic liquids.  相似文献   

18.
A Lactobacillus buchneri GBS3 strain isolated from the traditional Chinese pickles was used for the production of 3-phenyllactic acid(PLA), an important compound with antimicrobial activities against a wide species of grampositive and gram-negative bacteria and some fungi. The growth performance of this strain in the de Man, Rogosa and Sharpe(MRS) medium, the production of metabolites of valuable organic acids, and the biosynthesis of PLA using this strain as the whole-cell biocatalyst and phenylpyruvic acid(PPA) as the precursor, were investigated experimentally. The uniform design method with overlay sampling was developed for the optimization of the biotransformation conditions. The results showed that although it produced naturally lactic acid with the maximum concentration of 1.84 g·L~(-1) and PLA with the concentration of 0.015 g·L~(-1) after 66 to 72 h cultivation in MRS broth by fermentation, the present strain displayed an effective utilization ability by transforming PPA to PLA. By the uniform design method with overlay sampling for the design and optimization of transformation conditions, a maximum yield of 10.93 g·L~(-1) PLA with the mole conversion ratio of 83.07% from PPA to PLA was achieved under the optimized condition, i.e., 20 g·L~(-1) glucose, 270 g·L~(-1) cells, 13 g·L~(-1) PPA, pH 8.0 and the reaction time of 15 h, indicating that Lactobacillus buchneri GBS3 was an interesting strain for the biosynthesis of PLA via the microbial transformation. The prediction of PLA yield under different conditions was achieved successfully based on the limited information of only a small number of experiments by the uniform design with overlay sampling. Therefore, the present methodology is effective and helpful for the optimization of the biosynthesis processes of PLA.  相似文献   

19.
TIN-Al2O3 composite powders with different TiN contents (0,10 vol%,20 vol%,30 vol% and 40 vol%) were prepared with micrometer TiN and α-Al2O3 powder (their purities were 99%) as starting materials by wet ball milling for 5 h.TiN-Al2O3 com-posite were then prepared by pressing the above composite powders,drying at 200 ℃ for 12 h and firing at 1 800 ℃ for 3 h in nitrogen atmosphere in hot-pressing furnace.The influences of TiN content on mechanical properties and electrical conductivity of TiN-Al2O3 com-posites were studied.The results showed that the me-chanical properties of the composite increased with TiN content increasing,while the resistivity of composites de-creased.A composite with 40% TiN had 498 MPa ben-ding strength,4.285 MPa·m1/2 fracture toughness,1.34×10-3 Ω·cm resistivity.The SEM analysis showed that the fine TiN crystals distributed among the crystal boundary of Al2O3 matrix.They bonded together forming a net-like structure which played a role of re-straining Al2O3 grains from growing up,toughening and strengthening,so the mechanical properties of TIN -Al2O3 composite were enhanced.  相似文献   

20.
Polyurea microcapsules containing NiCl2 were prepared by interracial polymerization between diisocyanate and water with triethylamine as a catalyst in water-in-oil emulsion system. The influence of preparation conditions such as the dosage and feed mode of the catalyst, concentration of the encapsulated NiCl2, and concentration and structure of diisocyanates on the breakage of the microcapsules have been evaluated. The results show thatbreakage is strongly dependent on the rate of polymerization and stability of initial emulsion. The improved microcapsules with low breakage have been produced under the optimum conditions. Furthermore, the obtained microcapsules capsules immobilizing NiCl2 as a recyclable catalyst is successfully used in benzaldehyde reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号